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Abstract 1 

 An expert specifies time paths of knowledge transfer and payments for two cash-constrained 2 

agents, who are free to walk away at any time, with the constraint that the expert can only train one agent 3 

during each period. The results show that in a profit-maximizing contrast, an agent is paid all previously 4 

accumulated wages in exchange for knowledge transfer during a period when he gets trained. Agents 5 

eventually receive all knowledge and have identical training duration. When players are not patient 6 

enough, the expert trains the two agents sequentially so that an agent is not trained until the training of the 7 

other agent is completed. When players are patient enough, the expert trains the two agents alternatively 8 

over time with similar time paths of knowledge transfer stocks. Training lasts longer when players are 9 

more patient, but the presence of other agents does not alter the training duration of each single agent. 10 

 11 

JEL classification: C6; D8; J2; M5 12 

Keywords: Apprenticeships; Learning by doing; Contract Theory; Principal-agent;  13 
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1. Introduction 14 

1.1 Overview 15 

 During apprenticeships, agents often go through a stage in which they gradually acquire 16 

knowledge from their trainers while working long hours. As first noted by Becker (1964), the first-best 17 

allocation, which would involve transferring knowledge as quickly as possible, is not achievable since 18 

knowledge cannot be used as collateral. Moreover, when an expert has multiple agents to train during 19 

multiple periods, the expert faces the problem of allocating the amount of knowledge transfer and rewards 20 

among agents (spatial allocation), as well as designing the time schedule to train each agent (temporal 21 

allocation). This paper argues that under dynamic self-enforcing contracts with multiple agents, in which 22 

agents are trained gradually over time, (nearly) equal temporal and spatial allocation among agents can be 23 

both profit-maximizing and welfare-maximizing. 24 

 The model in this paper is an extension of that in Garicano and Rayo (2017), in which an expert 25 

(she) and two agents (he), both being risk-neutral, interact repeatedly over time. The expert has a stock of 26 

general purpose, perfectly divisible knowledge. The type of knowledge each agent acquires may be the 27 

same or different, and agents do not interact with each other. Initially, each agent has no knowledge and is 28 

not able to produce output. He also has no cash and thus cannot directly purchase knowledge from the 29 

expert. By transferring knowledge, the expert raises the agents’ productivity and can extract from their 30 

output, but each agent may choose to leave with the knowledge already acquired and produce on his own.  31 

 Players rely on a self-enforcing multiperiod agreement, in which each agent may accept wages 32 

below output, but only to the extent that he is compensated with additional knowledge. The complication, 33 

compared to the single-agent case, is that the expert can only train one agent during a period (e.g., 34 

teaching some advanced skills requires one-to-one training). Effectively, the expert’s problem is to design 35 

two contracts, but for the contract with each agent, there is a constraint that the expert cannot train the 36 

focal agent in certain time periods when the expert trains the other agents, and this constraint is chosen by 37 

the expert herself. However, an agent that is not trained during a period can still produce output and get 38 
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paid. The expert needs to specify the time path for which agent to train, wages, and the amount of 39 

knowledge transfer for each agent. 40 

 I show that in a profit-maximizing contract, after an initial knowledge gift to initiate the 41 

generation of some output, each agent works for the expert, and may be paid or extracted money during 42 

periods when he is not trained, but the cumulative payments add up to 0 upon each period when he gets 43 

trained. In periods when the agent is trained, the value of the additional knowledge he receives is just high 44 

enough to compensate him for the current output he gives up and the cumulative wages he earns since the 45 

last periods when he is trained. The duration of the apprenticeship for an agent is determined by both the 46 

size of the initial knowledge gift, and the distribution of periods when the agent cannot be trained. These 47 

results are a generalization of those from the single-agent model in Garicano and Rayo (2017). 48 

 When designing the training schedule, the expert faces two trade-offs. First, by raising agents’ 49 

productivity, a larger amount of the initial knowledge gift allows the expert to extract revenues more 50 

quickly from the agents, but also reduces the remaining knowledge that the expert can sell during the 51 

labor-for-training exchange. The other trade-off is that the expert wants to use future knowledge transfer 52 

to prevent both agents from leaving to have a high overall productivity, but he can only teach one agent 53 

during each period. More specifically, although training a focal agent over several consecutive periods 54 

can more quickly increase the productivity of the focal agent, it delays the training of the other agent, 55 

which lowers his productivity and can make it more difficult to prevent him from leaving. 56 

 I find that in a profit-maximizing contract, training is (nearly) alternative, that is, the expert takes 57 

turns transferring the two agents with the same amount of additional knowledge over time. Therefore, the 58 

knowledge stocks of the two agents grow in a parallel manner over time with a lag of only one period. 59 

Interestingly, the fact that there is more than one agent to be trained does not affect the duration of 60 

apprenticeship of each agent (i.e., the duration is the same as that in the single-agent case). Moreover, 61 

agents have the same length of duration, so that the agent who gets trained earlier will graduate earlier. As 62 

players become more patient, the apprenticeship gets longer and knowledge is transferred more slowly, 63 

since remaining knowledge becomes more valuable. I also show that every Pareto-efficient contract 64 
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preserves the structure in the profit-maximizing contract, with the novice’s Pareto-weight only reducing 65 

the duration of apprenticeship. 66 

1.2 Related Literature 67 

 The current work is related to the literature on dynamic relational contracts between a principal 68 

and multiple agents, in which self-enforcing rewards motivate the agents (Calzolari and Spagnolo 2009; 69 

Board 2011; Andrews and Barron 2016; Deb et al. 2016; Ishihara 2017; Barron and Powell 2019; Kvaløy 70 

and Olsen 2019). This literature usually focuses on a different question about inducing effort exertion 71 

while treating the agents’ productivity as fixed and exogenous. In contrast, the current paper assumes that 72 

agents always exert effort without cost, and investigates how the agents’ productivity changes 73 

endogenously. Additionally, it is usually assumed that all multiple agents have the opportunity to 74 

participate in production and compete during each period, but in the current model, temporal asymmetry 75 

may occur. 76 

 For the human capital acquisition literature, many previous studies explain the incentives for 77 

firms to train agents by invoking market imperfection, such as uncertainty and asymmetric information 78 

about agents’ quality (Katz and Ziderman 1990; Acemoglu and Pischke 1998), or matching frictions 79 

(Burdett and Smith 1996; Lowenstein and Spletzer 1998). This paper focuses on the dynamic self-80 

enforcing mechanism, which was first proposed in Garicano and Rayo (2017). A following extension by 81 

Fudenberg and Rayo (2019) assumed that the agent can split effort between a knowledge-dependent 82 

“skilled task” and a knowledge-independent “unskilled task”. As the apprenticeship proceeds, the extent 83 

of the agent’s overwork decreases, and the agent spends a decreasing amount of time on menial effort. 84 

Recently, Fudenberg et al. (2021) introduced agent’s effort exertion, and showed that a Pareto-efficient 85 

contract has an initial phase where the agent learns as fast as possible, followed by a longer phase during 86 

which the expert constrains the speed of knowledge transfer. However, all these models focus on the case 87 

when there is only a single agent and there is continuous training in every period. In contrast, when there 88 

are multiple agents, an agent cannot be trained continuously.  89 
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 The rest of this paper is organized as follows. Section 2 presents the general model setup. Section 90 

3 derives the properties of profit-maximizing contracts with a single agent under the constraint that the 91 

expert cannot transfer knowledge during some periods. Based on the results in Section 3, Sections 4 and 5 92 

derives the profit-maximizing and Pareto-efficient contracts when there are two agents, respectively. 93 

Finally, I conclude and discuss the findings in Section 6. 94 

2. The Baseline Model 95 

 I consider a baseline model with an expert (she) and 𝑁 agents (he), all being risk-neutral. Players 96 

interact over infinite, discrete periods 𝑡 = 0,1, … and discount future payoff using a common interest rate 97 

𝑟 >  0, with 𝛿 =
1

1+𝑟
 being the players’ discount factor. The expert possesses one unit of general-purpose 98 

knowledge. The knowledge is perfectly divisible, does not depreciate, and can be transferred from the 99 

expert to the agent at any speed desired by the expert.  100 

 I use 𝑋𝑖,𝑡 ∈  [0, 1] to denote agent 𝑖’s stock of knowledge at the beginning of period 𝑡. Initially at 101 

𝑡 = 0, all agents have no knowledge (i.e., 𝑋𝑖,0 = 0, ∀𝑖 = 1,2, … , 𝑁). During each period 𝑡, the expert can 102 

only transfer knowledge to a single agent. The unit of a period (e.g., 1 hour, 1 day) can be interpreted as 103 

the duration of individual training, which may vary with the knowledge-transfer activities (e.g., a piano 104 

class takes about 1 hour, while teaching a molecular experiment may take one to several days). It should 105 

be emphasized that the discount factor 𝛿 should be larger when the time unit of a period is shorter. 106 

 During period 𝑡, each agent 𝑖 works by himself and produces output 𝑦𝑖,𝑡= 𝑓(𝑋𝑖,𝑡). I assume that 107 

the production function 𝑓(⋅) is continuous and increasing, with 𝑓(0) = 0. Therefore, in period 0, 108 

knowledge can be transferred but no output is produced. One interpretation of the production function is 109 

that an agent’s output or performance is more valuable when he commands more knowledge or skills. 110 

Each period, the agent may choose to either remain in the contract and work for the expert, or leave the 111 

relationship and work for himself. Since knowledge is general, output is the same in both cases. I assume 112 

that an agent cannot return to reinvolve in the contract once he leaves. During each period 𝑡, the expert 113 

extracts profits 𝑓(𝑋𝑖,𝑡) from each agent 𝑖’s output, and compensates him by a monetary transfer 𝑤𝑖,𝑡 ∈ ℝ 114 
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(which I call a wage), and a transfer of additional knowledge 𝑋𝑖,𝑡+1 − 𝑋𝑖,𝑡. I assume that agents cannot 115 

teach each other, so that the knowledge can only be transferred from the expert. 116 

 At the beginning of period 0, all players agree on a relational contract: a self-enforcing agreement 117 

that specifies a knowledge stock 𝑋𝑖,𝑡 and wage 𝑤𝑖,𝑡, for each period 𝑡 and each agent 𝑖, conditional on the 118 

players remaining in the contract. I denote a relational contract by 𝒞 = ({𝑋𝑖,𝑡}
𝑖=1

𝑁
, {𝑤𝑖,𝑡}

𝑖=1

𝑁
)

𝑡=0

∞
, which I 119 

call a contract for conciseness thereafter. 120 

 Let Π𝑖,𝑡(𝒞) denote the expert’s profits obtained from agent 𝑖, and 𝑉𝑖,𝑡(𝒞) be agent 𝑖’s 121 

continuation payoff from the standpoint of the beginning of period 𝑡. The expert’s overall profits Π𝑡(𝒞) 122 

and agent 𝑖’s payoff 𝑉𝑖,𝑡(𝒞) in period 𝑡 are, respectively, 123 

Π𝑡(𝒞) = ∑ 𝛿𝜏−𝑡Π𝑖,𝑡(𝒞)

∞

𝜏=𝑡

= ∑ 𝛿𝜏−𝑡 ∑[𝑓(𝑋𝑖,𝜏) − 𝑤𝑖,𝜏]

𝑁

𝑖=1

∞

𝜏=𝑡

, 124 

𝑉𝑖,𝑡(𝒞) = ∑ 𝛿𝜏−𝑡𝑤𝑖,𝜏

∞

𝜏=𝑡

. 125 

At the beginning of period 𝑡, each player is free to walk away from the relationship, and the incentive 126 

compatibility constraints (IC) for the expert and agent 𝑖 are, respectively, 127 

Π𝑖,𝑡(𝒞) ≥ 0, ∀𝑖, ∀𝑡, (1) 128 

𝑉𝑖,𝑡(𝒞) ≥
1

1 − 𝛿
𝑓(𝑋𝑖,𝑡), ∀𝑖, ∀𝑡. (2) 129 

I assume agents have no access to credit and begin the relationship without any cash, thus the agents 130 

cannot simply buy all knowledge from the expert. As a result, the contract must also satisfy the liquidity 131 

constraint (LC) given by 132 

∑(1 + 𝑟)𝑡−𝜏𝑤𝑖,𝜏 ≥ 0, ∀𝑖, ∀𝑡

𝑡

𝜏=0

. (3) 133 

 Throughout the majority of this paper, I assume the expert has full bargaining power in the 134 

market, and thus she designs the contract 𝒞 to maximize her profit. The expert’s problem is 135 
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max
𝒞=({𝑋𝑖,𝑡}

𝑖=1

𝑁
,{𝑤𝑖,𝑡}

𝑖=1

𝑁
)

𝑡=0

∞
Π0(𝒞) , (I)

 136 

subject to (1), (2), (3), 137 

plus the two constraints that 𝑋𝑖,𝑡 ∈ [0,1] is non-decreasing, and only a single agent may be taught during 138 

each period (i.e., |{𝑖|𝑖 ∈ {1,2, … , 𝑛}, 𝑋𝑖,𝑡+1 − 𝑋𝑖,𝑡 > 0}| ∈ {0,1}, ∀𝑡). I also study the broader set of 139 

Pareto-efficient contracts that maximize a weighted sum of all players’ payoffs.  140 

 Finally, following Garicano and Rayo (2017), if the expert completes the knowledge transfer to 141 

an agent 𝑖 in finite time, I say that agent 𝑖 graduates. I use 𝑇𝑖 to denote the first period after which there is 142 

no longer knowledge transfer to agent 𝑖, so 𝑇𝑖 = min{𝑡|𝑋𝑖,𝑡 = 𝑋𝑖,𝜏, ∀𝜏 ≥ 𝑡}. 143 

 Since the agents do not interact with each other in terms of production and knowledge transfer, 144 

and each agent only cares about his own utility, a contract with 𝑁 agents can be effectively considered as 145 

𝑁 contracts between the expert and each individual agent. However, each of the 𝑁 contracts differs from 146 

that in Garicano and Rayo (2017) due to the fact that the expert is not able to transfer knowledge to the 147 

focal agent in some periods. In other words, the friction is that training a focal agent during a period 148 

inhibits training other agents. 149 

 Following the above conjecture, I derive the profit-maximizing contract in two steps. First, in 150 

Section 3, I present the properties of a profit-maximizing contract with a single agent, given the constraint 151 

that the expert cannot transfer knowledge during some periods. The result allows me to calculate the 152 

expert’s profits obtained from each agent in a contract with multiple agents, based on which I then derive 153 

the profit-maximizing contract in Section 4. 154 

3. Profit-maximizing Contracts with A Single Agent given Non-transfer Periods 155 

 In this section, I consider a contract with a single agent, and denote the agent’s knowledge stock 156 

and wage by 𝑋𝑡 and 𝑤𝑡, respectively. The model setup is similar to the baseline model in Garicano and 157 

Rayo (2017), with the additional constraint of a set of periods ℬ during which knowledge transfer is not 158 

allowed, which I refer to as non-transfer periods. For ease of description, I denote the set of periods 159 
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during which knowledge transfer is allowed as 𝒜 (𝒜 = ℕ+\ℬ), which I refer to as the knowledge-160 

transfer periods. The constraint of non-transfer periods can be expressed as  161 

𝑋𝑡+1 = 𝑋𝑡 , ∀𝑡 ∈ ℬ. (4) 162 

Therefore, the expert’s problem is 163 

max
𝒞=(𝑋𝑡,𝑤𝑡)𝑡=0

∞
Π0(𝒞) , (II) 164 

subject to (1), (2), (3), (4). 165 

 It turns out that training will be completed in a finite time. Before graduation, upon every 166 

knowledge-transfer period, the agent earns zero cumulative wages and is compensated through additional 167 

training. 168 

Proposition 1: For a contract with a single agent, given the constraint of non-transfer periods ℬ, every 169 

optimal contract follows the following properties: 170 

(i) The agent graduates in finite time, and the knowledge transfer is complete, that is, 𝑋𝑇 = 1 for some 𝑇. 171 

(ii) The agent’s liquidity constraint binds at every knowledge-transfer period before graduation. Namely, 172 

∑ 𝛿𝜏−𝑡𝑤𝜏
𝑡
𝜏=0  = 0, for all 𝑡 ∈ 𝒜 ∩ {𝑡 ∈ ℕ+|𝑡 < 𝑇}. This means that the cumulative wages between two 173 

knowledge-transfer periods add up to 0, and the agent earns zero cumulative wages upon graduation. In 174 

other words, the value of additional knowledge transferred is just high enough to compensate the agent 175 

for the current output he gives up and the wage he earned since the last period when he was trained. 176 

 The intuition is similar to that given in Garicano and Rayo (2017). For Property (i), note that from 177 

any date onward, the overall profits the expert can extract from the agent are no greater than the value of 178 

the knowledge remaining to be transferred, and this value will approach zero as time proceeds due to 179 

discounting. Therefore, once the agent’s output during a period exceeds the value of remaining 180 

knowledge, the expert will end the contract by selling all remaining knowledge at once. Moreover, since 181 

any additional knowledge has a positive value, the expert profits from selling all knowledge to the agent.  182 

 For Property (ii), suppose in an optimal contract with graduation date 𝑇, the agent’s liquidity 183 

constraint does not bind at 0 at some knowledge-transfer periods before his graduation. Consider an 184 
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alternative contract in which the agent graduates earlier at 𝑇′ < 𝑇 but earns zero cumulative wages before 185 

graduation (after 𝑇′ the wage is 𝑓(1)), with 𝑇′ chosen such that the agent’s cumulative wages in the 186 

present value, thus his payoff, do not change. Since now the agent must wait longer to earn his wages, his 187 

continuation values 𝑉𝑡 increase. Since now the incentive constraints do not bind, the expert can increase 188 

the agent’s payoff unchanged. 189 

 Proposition 1 suggests that to find the optimal contract with a focal agent given certain non-190 

transfer periods, it is sufficient to focus on contracts that satisfy the properties in Proposition 1. Denote 191 

the knowledge-transfer periods before graduation by {𝑡𝑘}𝑘=1
𝐾 = 𝒜 ∩ {𝑡|𝑡 < 𝑇}, where 𝐾 is the number of 192 

knowledge-transfer periods. The initial and the last knowledge-transfer periods are 𝑡1 = 0 and 𝑡𝐾 = 𝑇 −193 

1, respectively. Proposition 2 characterizes the expert’s knowledge transfer schedule over time in a 194 

contract that satisfies the properties in Proposition 1. 195 

Proposition 2: Given the constraint of non-transferable periods ℬ, let 𝒞 be a feasible single-agent 196 

contract (satisfying constraint (1)-(4)) that has graduation date 𝑇 and satisfies the properties in 197 

Proposition 1. Before graduation, the agent’s knowledge stock after each knowledge-transfer period is 198 

𝑓(𝑋𝑡+1) = 𝛿𝑇−(𝑡+1)𝑓(1), ∀𝑡 ∈ 𝒜, 𝑡 < 𝑇. 199 

Corresponding, the expert’s profits at 𝑡 = 0 are 200 

Π0(𝒞) =
∑ (1 − 𝛿𝑡𝑘+1−𝑡𝑘)𝐾−1

𝑘=1

1 − 𝛿
𝛿𝑇𝑓(1). (5) 201 

 Proposition 2 shows that after each knowledge-transfer period, the agent’s knowledge stock 202 

depends only on the time length towards graduation, but not on the non-transfer periods. As a result, from 203 

the standpoint of period 0, the profits the expert obtains from agent 𝑖 after every knowledge-transfer 204 

period are always equal to 𝛿𝑇𝑖, where 𝑇𝑖 is the graduation date. However, during non-transfer periods 205 

between two knowledge-transfer periods, the profits obtained during each non-transfer period will 206 

decrease over time with a rate of 𝛿. Therefore, as equation (5) indicates, the expert’s profits obtained from 207 

the agent only depend on the distribution of the time length between two knowledge-transfer periods (i.e., 208 

{𝑡𝑘+1 − 𝑡𝑘}𝑘=1
𝐾−1), which leads to an important property described in Corollary 1. 209 
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Corollary 1: Consider contracts that satisfy the properties in Proposition 2 for each agent. Let 𝒞 be a 210 

contract in which the expert trains agent 𝑖 during periods 𝑡 and 𝑡 (𝑡 < 𝑡), and agent 𝑗 ≠ 𝑖 gets trained 211 

before 𝑡 and graduates after 𝑡, (i.e., 𝑇𝑗 > 𝑡). Let {𝑡𝑗,𝑘}
𝑘=𝑘∗

𝑘∗∗

= {𝑡𝑗,𝑘}
𝑘=1

𝐾2 ∩ {𝑡|𝑡 < 𝑡 < 𝑡} be the periods 212 

when the expert trains agent 𝑗 during the range 𝑡 < 𝑡 < 𝑡. It does not change the expert’s profits obtained 213 

from agents 𝑖 by increasing or decreasing {𝑡𝑗,𝑘}
𝑘=𝑘∗

𝑘∗∗

 by the same amount of periods such that {𝑡𝑗,𝑘}
𝑘=𝑘∗

𝑘∗∗

 214 

are still in the range 𝑡 < 𝑡 < 𝑡. 215 

 For intuition, note that the expert’s profits only depend on the distribution of the time length 216 

between two knowledge-transfer periods. Clearly, the modification does not change the distribution for 217 

agent 𝑖, which is the periods during which the expert trains agent 𝑗. 218 

4. Profit-maximizing Contracts with Two Agents 219 

 In this section, I return to the original problem proposed in section 2, which is to find the optimal 220 

contract with multiple agents. To derive the optimal contract, it is sufficient to focus on contracts in which 221 

knowledge transfer occurs in every period before all agents graduate. Otherwise, suppose there is a period 222 

when no agent gets trained; the expert can increase her profits by training any agent during that period, 223 

which increases his knowledge stocks and productivity. Moreover, for a focal agent, conditioned on the 224 

expert’s contracts with other agents (thus the non-transfer periods for the focal agent are given), the 225 

optimal contract with the focal agent should satisfy the properties in Propositions 1 and 2, which 226 

determine the expert’s profits obtained from the focal agent. This is also true for the contracts with other 227 

agents. Therefore, we only need to focus on the case in which the expert’s contract with every agent 228 

satisfies the properties in Propositions 1 and 2. 229 

 For simplicity and better intuition, I focus on the case of two agents. I denote the agent who gets 230 

trained first in period 0 by 1 and the other by 2. I denote the graduation date of agent 𝑖 ∈ {1,2} by 𝑇𝑖, and 231 

let 𝑇𝑚𝑎𝑥 be the maximum graduation date max{(𝑇𝑖)𝑖=1
𝑁 }. I denote the sequence of the periods during 232 

which agent 𝑖 is trained before he graduates by {𝑡𝑖,𝑘}
𝑘=1

𝐾𝑖
. 233 
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 The contracts with two agents can be classified into two scenarios, depending on whether agent 2 234 

gets trained before agent 1 graduates or not1. I first characterize the optimal contracts under the scenario 235 

when agent 2 gets trained only after agent 1 graduates. 236 

4.1. Agent 2 is not trained until agent 1 graduates 237 

Lemma 1: Up to an integer constraint of 𝑇∗ = 1 −
1

ln 𝛿
 and 

𝛿

𝑒 ln 𝛿
, for every optimal contract 𝒞 in which 238 

agent 2 is not trained before agent 1 graduates, the graduation dates of agents 1 and 2 are 𝑇1 = 𝑇∗ +239 

𝛿

𝑒 ln 𝛿
, and 𝑇2 = 2𝑇∗ +

𝛿

𝑒 ln 𝛿
, respectively, with payments and knowledge transfer to each agent satisfying 240 

the properties in Propositions 1 and 2. 241 

Proof: Clearly, it is optimal for the expert to train agent 2 immediately after agent 1 graduates, and since 242 

now there is only a single agent, the optimal duration of training for agent 2 is 𝑇∗ (thus 𝑇2 = 𝑇1 + 𝑇∗), as 243 

given by Garicano and Rayo (2017). Therefore, the expert’s profits are a function of agent 1’s graduation 244 

date 𝑇1 as [𝑇1 − 1 + 𝛿𝑇∗
(𝑇∗ − 1)]𝑓(1). The first-order condition with respect to 𝑇1 shows that at the 245 

optimality2, 𝑇1 = 𝑇∗ +
𝛿

𝑒 ln 𝛿
. ∎ 246 

 Since 𝑇∗ +
𝛿

𝑒 ln 𝛿
< 𝑇∗, for a contract with multiple agents in which each agent is trained 247 

continuously until his graduation, the agent who is trained earlier will have shorter a graduation date than 248 

the optimal graduation date under the case when there is only a single agent, 𝑇∗. Intuitively, the expert 249 

gives up some profits obtained from agent 1 by speeding up knowledge transfer in order to start training 250 

agent 2 earlier. 251 

4.2. Agent 2 gets trained before agent 1 graduates 252 

 For the case when agent 2 gets trained before agent 1 graduates, the derivation is less intuitive. In 253 

this scenario, the expert earns no profits when 𝑇𝑚𝑎𝑥 ≤ 2. When 𝑇𝑚𝑎𝑥 = 3, the expert cannot obtain 254 

 
1Note that agent 2 may or may not get trained in the scenario when agent 2 is not trained before agent 1 graduates. 
2The first-order condition is 𝛿𝑇1 [1 −

𝛿

𝑒
+ (𝑇1 − 1) ln 𝛿] 𝑓(1) = 0. 
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profits from agent 2, so the expert’s profits are higher when she continuously trains agent 13. Therefore, it 255 

is sufficient to focus on the case when the maximum graduation date is greater than 3 (i.e., 𝑇𝑚𝑎𝑥 ≥ 4). 256 

Lemma 2 shows that in order to derive the optimal contract, it is sufficient to focus on contracts a special 257 

knowledge transfer schedule, as illustrated in Figure 1. 258 

Lemma 2: For any contract 𝒞 = ({𝑦1,𝑡, 𝑦2,𝑡}, {𝑤1,𝑡, 𝑤2,𝑡})
𝑡=0

∞
 with 𝑇𝑚𝑎𝑥 ≥ 4, in which the contract with 259 

each agent satisfies the properties in Propositions 1 and 2, there exists an alternative contract 𝒞′ ∈ ℋ 260 

that gives the same or higher profits to the expert, where ℋ is a set of contracts with the knowledge 261 

transfer schedule being as follows: 262 

 (i) Begins with 𝑛 ≥ 1 rounds of alternate training between the two agents. Namely, agent 1 is  263 

     trained in periods 𝑡 = 0, 2, … , 2𝑛 − 2, and agent 2 is trained in periods 𝑡 = 1, 3, … , 2𝑛 − 1. 264 

            (ii) Followed by 𝑚 = 𝑇𝑗 − 2𝑛 − 1 ( 𝑗 ∈ {1,2}) consecutive knowledge-transfer periods for one of  265 

     the agents. Namely, agent 1 or 2 is trained in periods 𝑡 = 2𝑛, 2𝑛 + 1, … , 𝑇𝑗 − 2. 266 

           (iii) Agent 𝑗 is trained in period 𝑡 = 𝑇𝑗 − 1, and thus graduates at 𝑡 = 𝑇𝑗. 267 

            (iv) Followed by 𝑙 + 1 = 𝑇𝑖 − 𝑇𝑗, (𝑖 ∈ {1,2} and 𝑖 ≠ 𝑗) consecutive knowledge-transfer periods for 268 

      agent 𝑖. Namely, agent 𝑖 is trained in periods 𝑡 = 𝑇𝑗, 𝑇𝑗 + 1, … , 𝑇𝑖 − 1. 269 

 (v) The contract with each agent satisfies the properties in Proposition 1 and 2. 270 

Proof: First I show that if an agent is trained in two consecutive periods 𝑡′ and 𝑡′ + 1 (without loss of 271 

generality, say it is agent 1), the expert may increase her profits by moving all knowledge-transfer periods 272 

for agent 2 during period 𝑡′ and 𝑇1 earlier by a same amount such that 𝑡2,1 = 𝑡′ + 1. Corollary 1 suggests 273 

that this modification does not change the expert’s profits obtained from agent 1. If agent 2 graduates 274 

before 𝑇1, this modification increases the expert’s profits obtained from agent 2 due to both quicker and 275 

earlier training. If agent 2 graduates after 𝑇1, the modification increases the time interval between the last 276 

knowledge-transfer period of agent 2 before 𝑇1 and the first knowledge-transfer period after 𝑇1, thus 277 

 
3When 𝑇𝑚𝑎𝑥 = 3, given agent 2 gets trained before agent 1 graduate, agent 1 is trained at 𝑡 = 0, 2, and agent 2 is 

trained during 𝑡 = 1. The profits are lower than agent 1 is trained during 𝑡 = 0,1,2. 
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increasing the profits obtained from agent 2 during the two knowledge-transfer periods. Also, the 278 

modification does not change the profits obtained in other periods. If agent 2 gets trained before 𝑡′, by 279 

Corollary 1, this modification does not change the distribution of non-transfer interval for agent 2. If 280 

agent 2 gets trained after 𝑡′, denote the first knowledge-transfer period of agent 2 by 𝑡2,1, this 281 

modification increases the duration of training for agent 2, 𝑇2 − 𝑡2,1, by 𝑡2,1 − (𝑡′ + 1), which discounts 282 

the knowledge stock of agent 2 in each period before 𝑇1 by 𝛿𝑡2,1−(𝑡′+1). However, since agent 2 is trained 283 

earlier by a time length of 𝑡2,1 − (𝑡′ + 1), in terms of expert’s profits, the two opposing effects cancel 284 

each other out. The same logic applies to the case when agent 2 is trained in two consecutive periods. 285 

 Now consider a contract 𝒞 that satisfies the properties in Propositions 1 and 2, with 𝑡1,1 = 0 and 286 

graduation dates 𝑇1 and 𝑇2. Let 𝑇𝑚𝑖𝑛 = min{𝑇1, 𝑇2}. A contract 𝒞′ ∈ ℋ which gives equal or higher 287 

profits than 𝒞 can be obtained based on the following the procedure:  288 

 (i) Let 𝑖 = 1. 289 

 (ii) If 𝑡2,𝑖 > 2𝑖 − 1, reduce all the knowledge-transfer periods of agent 2 between periods 𝑡2,𝑖 and  290 

       𝑇𝑚𝑖𝑛 − 1 by 𝑡2,𝑖 − (2𝑖 − 1) so that 𝑡2,𝑖 = 2𝑖 − 1. The expert trains agent 1 in the rest periods  291 

       before period 𝑇𝑚𝑖𝑛 − 1. Adjust wages and knowledge stocks so that the new contract      292 

       satisfies the properties in Propositions 1 and 2. 293 

 (iii) If 𝑡1,𝑖+1 > 2(𝑖 + 1), reduce all the knowledge-transfer periods between periods 𝑡1,𝑖+1 and  294 

        𝑇𝑚𝑖𝑛 − 1 by 𝑡1,𝑖+1 − 2(𝑖 + 1) so that 𝑡1,𝑖+1 = 2(𝑖 + 1), and train agent 2 in the rest periods  295 

        before 𝑇𝑚𝑖𝑛 − 1. Adjust wages and knowledge stocks so that the new contract satisfies the  296 

        properties in Proposition 1 and 2. 297 

 (iv) Let 𝑖 = 𝑖 + 1, and repeat steps (ii)-(iv) until 𝑡1,𝑖+1 ≥ 𝑇𝑚𝑖𝑛 − 1 or 𝑡2,𝑖 ≥ 𝑇𝑚𝑖𝑛 − 1. ∎ 298 

 Lemma 2 allows us to focus on a subset of contracts and obtain an analytical expression of the 299 

expert’s profits based on the special properties of these contracts. We can then characterize the properties 300 

of the optimal contracts under the scenario when agent 2 gets trained before agent 1 graduates. 301 
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Lemma 3: Up to an integer constraint of 𝑇∗ = 1 −
1

ln 𝛿
 with 𝑇∗ ≥ 3, every optimal contract 𝒞 in which 302 

agent 2 is trained before agent 1 graduates satisfies the following properties: 303 

 (i) Agent 2 graduates right after agent 1 graduates (i.e., 𝑇2 = 𝑇1 + 1) and 𝑇1 = 𝑇∗. 304 

            (ii) The expert alternates training between agents 1 and 2 as much as possible (i.e., 𝑚 ∈ {0,1}).            305 

      When 𝑇∗ is even so that 𝑚 = 1, agent 1 is trained during period 𝑡 = 2𝑛. 306 

           (iii) Wages and knowledge transferred to each agent satisfy the properties in Propositions 1 and 2. 307 

      That is, each agent graduates in finite time 𝑇𝑖 with all knowledge transferred, earns zero  308 

      cumulative wages upon each period he gets trained. Before graduation, his knowledge stock  309 

      after a training period 𝑡 is 𝑓(𝑋𝑡+1) = 𝛿𝑇𝑖−(𝑡+1)𝑓(1). 310 

 The proof sketch and intuition are as follows: 311 

 (i) Agent 1 graduates before agent 2: Suppose agent 1 graduates after agent 2 (𝑇1 > 𝑇2), the 312 

expert can increase her profits by swapping the graduation dates of the two agents (i.e., let 𝑇1
′ = 𝑇2, 𝑇2

′ =313 

𝑇1), while keeping the training schedules by period 𝑇1
′ to be the same. Before the modification, agent 2’s 314 

productivity grows fast while agent 1’s productivity grows slowly, and the modification roughly swaps 315 

the two dynamics of productivity. Before the modification, agent 2 is trained later than agent 1, so the 316 

fast-growing productivity dynamics start later than the slow-growing productivity dynamics. The 317 

modification increases the expert’s profits by starting the fast-growing productivity dynamics earlier. 318 

 (ii) Agent 1 is trained during the 𝑚 consecutive periods after alternate training: Recall that 319 

Proposition 2 shows that the knowledge stock (thus productivity) during a period only depends on the 320 

distance between the focal period to the graduation date. Given that agent 1 graduates first, if agent 1 is 321 

trained during the 𝑚 consecutive periods, his productivity during these periods will be higher than agent 322 

2’s productivity if these periods are used to train agent 2. 323 

 (iii) The expert alternates training between two agents as much as possible before agent 1 324 

graduates: Proposition 2 shows that the profits obtained from an agent 𝑖 are always 𝛿𝑇𝑖 after each 325 

knowledge-transfer period, but the profits will decrease at a rate 𝛿 over time during non-transfer periods 326 
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due to discounting. If the expert reduces the rounds of alternative training from 𝑛 to 𝑛 − 1, agent 1 will 327 

replace agent 2 to receive training during period 2𝑛 − 1 in Figure 1. This modification increases the 328 

expert’s profits obtained from agent 1 by (1 − 𝛿)𝛿𝑇1 due to an increase in the productivity of agent 1 329 

during period 2𝑛. However, since at optimality, agent 1 is trained during the 𝑚 consecutive periods after 330 

alternative training, this modification increases the duration of non-transfer periods of agent 2 from 𝑚 +331 

1 to 𝑚 + 3, and thus systematically reduces the productivity of agent 2 in every period from period 2𝑛 to 332 

period 𝑇1. This causes a total loss of the profits obtained from agent 2 𝛿𝑇2(1 + 𝛿)(1 − 𝛿𝑚), which 333 

outweighs the increased profits from agent 1. 334 

 (iv) Agent 2 graduates right after agent 1 graduates: The previous steps show that in an optimal 335 

contract, agent 1 should graduate first, and before his graduation, the expert alternates training as much as 336 

possible. Therefore, by Proposition 2, the knowledge stocks of both agents 1 and 2 grow in a nearly 337 

constant rate over time before agent 1’s graduation date (increased by 1/𝛿2 every 2 periods). Since agent 338 

2’s knowledge stock dynamics is nearly identical to agent 1’s dynamics, with a delay of 1 period, the 339 

graduation date of the two agents should be the same, which means gent 2 should graduate right after 340 

agent 1 graduates. 341 

 Lemma 3 shows that the optimal training duration of each agent, 1 −
1

ln 𝛿
, is the same as when 342 

there is only one agent (Garicano and Rayo 2017). In other words, even when the expert can only teach 343 

one agent during a period, the addition of other agents does not affect each agent’s training duration. This 344 

is because when the expert trains the two agents alternatively, the sum of the productivity of agents 1 and 345 

2 grows at a constant rate over time as it does in the single-agent case, as illustrated by Figure 2. 346 

Therefore, the contract with two agents can be effectively considered as a single-agent contract. 347 

 It should be noted that whether fully alternative training is implementable depends on whether 𝑇∗ 348 

is odd or even. Training will be fully alternative when 𝑇∗ is odd. When 𝑇∗ is even, fully alternate training 349 

is not possible, and agent 1 will be trained consecutively in periods 𝑇∗ − 2 and 𝑇∗ − 1. 350 

4.3. Optimal contracts 351 
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 Lemmas 1 and 3 enable us to calculate the expert’s maximum profits under the two scenarios 352 

when agent 2 is not trained before agent 1 graduates and is trained before agent 1 graduates, respectively. 353 

The optimal contract is then obtained by comparing the maximum profits between these two scenarios. 354 

Proposition 3 relaxes the integer constraint assumed in Lemmas 1 and 3, and shows that alternate training 355 

is optimal when players are patient enough.  356 

Proposition 3: In an optimal contract with two agents that solves problem (I), when 0 < 𝛿 < 𝛿∗, where 357 

𝛿∗ ≈ 0.555 solves the equation 𝛿3 − 2𝛿2 − 𝛿 + 1 = 0, the expert trains agents sequentially (i.e., she 358 

starts training agent 2 only after agent 1 graduates). Agent 1’s graduation date is 2, and agent 2’s 359 

graduation date is 4 when 𝛿 < 0.5 and 5 when 0.5 < 𝛿 < 𝛿∗. For 𝛿∗ < 𝛿 < 1, the expert alternates 360 

training between agents as much as possible, and agent 2 graduates right after agent 1’s graduation. Let 361 

𝑇 = floor (1 −
1

ln 𝛿
). When 𝑇 is even, agent 1’s graduation date is 𝑇 when 𝑇 >

2𝛿(2−𝛿)

1−𝛿2 , and 𝑇 + 1 when 362 

𝑇 <
2𝛿(2−𝛿)

1−𝛿2 . When 𝑇 is odd, agent 1’s graduation date is 𝑇 + 1 when 𝑇 >
1+𝛿(2+2𝛿2−3𝛿)

1−𝛿2 , and 𝑇 when 363 

𝑇 <
1+𝛿(2+2𝛿2−3𝛿)

1−𝛿2 . 364 

 Proposition 3 shows that the optimal training has two contrasting types of dynamics depending on 365 

the discounting factor. Note that initially, agents have no knowledge, so the expert must transfer some 366 

“knowledge gift” for free to initiate production. Therefore, to earn profits, training must last for at least 367 

two periods. Since agents still produce output during periods when they are not trained, overall 368 

productivity will be higher if more agents remain in the contract. Therefore, the expert wants to use future 369 

additional knowledge transfer to prevent agents from leaving. However, since the expert can only train 370 

one agent during each period, this means that some of the agents must wait for at least one period to get 371 

trained, which makes it harder to prevent them from leaving.  372 

 When players are not patient enough, the optimal training is sequential. Suppose the expert does 373 

not train agent 1 after transferring the initial knowledge gift. Since agent 1 is not patient, he values his 374 

current output more and cares little about additional knowledge transfer that increases his productivity in 375 

the future. Therefore, he cannot wait for even as short as one period to receive training, and would rather 376 
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leave with his current knowledge and work by himself after the initial knowledge gift. As a result, it is 377 

better for the expert to complete training an agent once it starts training him, and then starts training other 378 

agents. Since initially, all agents have no knowledge, the expert can start training an agent at any time. 379 

When players are patient enough, both agents value the additional knowledge transfer in the future, and 380 

can wait for 1 or even more periods to receive training, allowing alternate training to be implementable. 381 

 Although Lemmas 1 and 3 assume an integer constraint for the optimal graduation date 1 −
1

ln 𝛿
, 382 

in the proof of Lemmas 1 and 3, the discounting factor is treated as a continuous variable. Therefore, as 383 

the last part of Proposition 3 shows, relaxation of the integer constraint does not change the overall 384 

structure of the optimal contract, but may only affect the graduation date by 1 period since now the 385 

optimal graduation date may not be an integer.  386 

 A small discount factor can occur if each training period takes a long time (e.g., training a big 387 

project), or if the relative productivity of the knowledge declines quickly over time. The latter may occur 388 

when the knowledge has short-term effectiveness with respect to productivity, which may be because the 389 

knowledge is likely to quickly become outdated, or lose its monopoly status in the future. In these 390 

scenarios, Proposition 3 predicts that training should be sequential and completed in a short time, so that 391 

only one agent will be trained during a certain time range. On the other hand, Proposition 3 predicts that 392 

multiple agents will be trained within a certain time range if each training period is short (e.g., a piano 393 

lesson, or a homework problem), or if the expert’s knowledge has long-term effectiveness in productivity. 394 

5. Pareto-efficient Contracts 395 

 Here I characterize the broader set of Pareto-efficient contracts, by solving the problem of a 396 

Planner who maximizes a weighted sum of the players’ payoff,  397 

𝜆 ∑ 𝑉𝑖,0(𝒞)

𝑁

𝑖=1

+ Π0(𝒞) = ∑(𝜆𝑉𝑖,0 + Π𝑖,0)

𝑛

𝑖=1

, (III) 398 
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subject to the same constraints as those in problem (I). The parameter 𝜆 ≥ 0 is the agents’ Pareto weight, 399 

which is assumed to be identical for all agents. Similar to that in section 4, I focus on the case when there 400 

are two agents.  401 

Corollary 2: Suppose 𝒞 is a Pareto-efficient contract 𝒞 with two agents that solves the Planner’s 402 

problem (III) for a given weight 𝜆. Then, 403 

 (i) 𝒞 has all properties in Proposition 1 and 2. Namely, each agent graduates at a finite date 𝑇  404 

      with complete knowledge, and earns zero cumulative wages upon each period when he is  405 

      trained. The agent’s knowledge stock after each period 𝑡 when he is trained is        406 

      𝑓(𝑋𝑡+1) = 𝛿𝑇−(𝑡+1)𝑓(1). 407 

 (ii) Let 𝑇𝜆
∗ = 1 −

1

ln 𝛿
−

2𝜆

1−𝛿2 ≥ 3. Up to an integer constraint of 𝑇𝜆
∗ with 𝑇𝜆

∗ ≥ 3, the expert trains 408 

the two agents alternately as much as possible, and the duration of training for each agent is 𝑇𝜆
∗. 409 

 The intuition of Corollary 2 is similar to that in the proof of the properties for a profit-maximizing 410 

contract. Corollary 2 means that every Pareto-efficient contract preserves the structure of profit-411 

maximizing contracts except for the agents’ date of graduation 𝑇. Unlike that in a profit-maximizing 412 

contract, where the training duration of each agent is the same as that when there is only a single agent. 413 

For Pareto-efficient contract, the efficient graduation duration date is influenced by the presence of other 414 

agents, as the efficient training duration when there is only a single agent is 1 −
1

ln 𝛿
−

𝜆

1−𝛿
, but the 415 

difference between the two values is very slight. 416 

6. Conclusion 417 

 Briefly, I have considered the optimal contract for multiperiod training arrangement between an 418 

expert and multiple agents, where the expert with commitment power to sell her knowledge to cash-419 

constraint agents. The expert faces the constraint that she can train only one agent in each period, which 420 

may occur when professional skills or knowledge require meticulous instructions and must be taught one-421 

on-one (e.g., more advanced skills). In the optimal contract, each agent receives no cumulative wages 422 

upon the periods when he gets trained before graduation. When players are impatient, agents are trained 423 
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sequentially. That is, the expert trains an agent only after she finishes training the previous agent, but 424 

agents graduate quickly in 2 or 3 periods. When players are patient enough, the duration of training 425 

becomes longer, and in the optimal contract, the expert trains agents (nearly) alternately with the same 426 

amount of additional knowledge transfer. Compared to a contract with a single agent, the presence of 427 

other agents does not affect the training duration of each agent.  428 

 Alternate training is prevalent in daily life, and the present results offer a possible explanation 429 

based on individual rationality. Another explanation for alternate training is inequity aversion. If agents 430 

dislike unequal allocations of time and the amount of knowledge transfer, expecting this, the expert may 431 

be motivated to allocate alternate training. 432 

 Finally, the present model mainly focuses on the case of two agents, and an extension of the 433 

model for any finite number of agents is needed, but it is natural to expect that the results may preserve 434 

the overall structure of the current findings. The present model assumes that agents do not interact, so it 435 

may be interesting to explore the case when agents with more knowledge can train others with less 436 

knowledge. Additionally, the current model assumes that all players are involved in the relationship at the 437 

same time, and it may be valuable to investigate the case when some agents join the contract later. In this 438 

scenario, the expert may want to quickly bridge the knowledge gap between agents. Furthermore, when 439 

agents can join later, the expert may also maintain a constant pool of agents in a balancing state between 440 

recruiting new agents and completing the training of current agents. 441 

  442 
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Figure 443 

 444 

Figure 1. An illustration of the knowledge transfer schedule in a contract in the set ℋ with properties 445 

described in Lemma 2 when agent 2 graduates later than agent 1 (𝑇1 < 𝑇2). 446 

  447 
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 448 

Figure 2. Growth of knowledge stock over time of agent 1 (𝑋1) and agent 2 (𝑋2) and the average 
𝑋1+𝑋2

2
 449 

under alternate training when 𝑇1 = 15, 𝑇2 = 16. The black line shows the optimal knowledge stock 450 

dynamics in a single-agent contract with graduation date being 15.  451 
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7. Appendix 452 

Proof of Proposition 1:   453 

 Property (i): When 𝒜 is finite, 𝑇 must be finite. Therefore, it is sufficient to focus on the case 454 

when the set of knowledge-transfer periods 𝒜 is infinite. Suppose that a contract 𝒞 = (𝑦𝑡 , 𝑤𝑡)𝑡=0
∞  is 455 

optimal (i.e., it solves problem (II)) but the training takes infinitely long, that is, 𝑦𝑡 < 𝑦 for all 𝑡, where 456 

𝑦 = lim
𝑡→∞

𝑦𝑡. Since 𝒜 is infinite, there exists a large enough knowledge-transfer period 𝑘 ∈ 𝒜 such that 457 

𝑦𝑘 ≥
1

𝑟
(𝑦 − 𝑦𝑘) and consider a new contract 𝒞′ = (𝑦𝑡

′, 𝑤𝑡
′)𝑡=0

∞  with 𝑦𝑡
′ = 𝑤𝑡

′ = 𝑦 for all 𝑡 > 𝑘, and 𝑤𝑘
′ =458 

𝑉𝑘(𝒞) −
1

𝑟
𝑦 ≥ 0. In other words, in period 𝑘, the agent gives up net output 𝑦𝑘 − 𝑤𝑘

′  in exchange for 459 

additional knowledge transfer 𝑦 − 𝑦𝑘. Therefore, 𝒞′ delivers a strictly higher profit than 𝒞, a 460 

contradiction. 461 

 Property (ii): Denote the sequence of knowledge-transfer periods before the graduation date 𝑇 by 462 

{𝑡𝑘}𝑘=1
𝐾 = 𝒜 ∩ {𝑡|𝑡 < 𝑇}. Following Garicano and Rayo (2017), I refer to a contract 𝒞 with graduation 𝑇 463 

as a delayed-reward contract if the agent’s liquidity constraint at period 𝑡𝑘 binds for all 𝑘 = 1,2, . . . , 𝐾; 464 

and a quasi-delayed-reward contract, if the agent’s liquidity constraint at period 𝑡𝑘 binds for all 𝑘 =465 

1,2, . . . , 𝐾 − 1, but may not bind at 𝑡𝐾 = 𝑇 − 1, that is, ∑ (1 + 𝑟)𝑡𝐾−𝜏𝑤𝜏
𝑡𝐾
𝜏=0 = ∑ (1 + 𝑟)𝑡𝐾−𝜏𝑤𝜏

𝑡𝐾
𝜏=𝑡𝐾−1

≥0. 466 

Let 𝒟 denote the set of delayed-reward contracts, and let 𝒬 denote the set of quasi-delayed-reward 467 

contracts (by definition, we have 𝒟 ⊂ 𝒬). 468 

 Step 1: Every optimal contract that solves problem (II) belongs to 𝒬. Let 𝒞 = (𝑦𝑡 , 𝑤𝑡)𝑡=0
∞ ∉ 𝒬 be 469 

an optimal contract with a graduation date 𝑇 and 𝑦𝑇 = 𝑓(1). Then, ∃𝑡∗ ∈ 𝒜 ∩ {𝑡|𝑡 < 𝑇 − 1} such that 470 

∑ (1 + 𝑟)𝑡∗−𝜏𝑤𝜏
𝑡∗

𝜏=0 > 0. Consider a contract 𝒞′ = (𝑦𝑡
′, 𝑤𝑡

′) ∈ 𝒬 with a graduation date 𝑆 such that:  471 

(i) The agent’s overall payoff is equal under 𝒞 and 𝒞′, i.e., 𝑉0(𝒞) = 𝑉0(𝒞′). This requires ∑ 𝛿𝑡𝑤𝑡
𝑇−1
𝑡=0 =472 

∑ 𝛿𝑡𝑤𝑡
′𝑡𝐾=𝑆−1

𝑡=𝑡𝐾−1+1 . (ii) For all knowledge-transfer periods 𝑡 ∈ 𝒜, the agent’s incentive constraint binds, that 473 

is, 𝑉𝑡(𝒞′) =
1

1−𝛿
𝑦𝑡

′, ∀𝑡 ∈ 𝒜. 474 

 Contract 𝒞′ has the property that 475 
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𝑉𝑡+1(𝒞′) ≥ 𝑉𝑡+1(𝒞), ∀𝑡 ∈ 𝒜. (A1)476 

For 𝑡 ∈ 𝒜 and 𝑡 < 𝑆, (A1) follows from the property 𝑉0(𝒞) = 𝑉0(𝒞′) and the fact that ∑ 𝛿𝜏𝑤𝜏
′𝑡

𝜏=0 = 0 477 

and ∑ 𝛿𝜏𝑤𝜏
𝑡
𝜏=0 ≥ 04. For 𝑡 ≥ 𝑆, (A1) follows from the fact that 𝑉𝑡+1(𝒞′) ≥

1

1−𝛿
𝑓(1) ≥ 𝑉𝑡+1(𝒞). 478 

Property (ii) and (A1) together imply that 𝑦𝑡
′ ≥ 𝑦𝑡 for all 𝑡 ∈ 𝒜. 479 

 Moreover, we have 480 

𝑉𝑡∗+1(𝒞′) > 𝑉𝑡∗+1(𝒞). (A2) 481 

When 𝑇 > 𝑡∗, (A2) follows from property 𝑉0(𝒞′) = 𝑉0(𝒞) and the fact that ∑ 𝛿𝜏𝑤𝜏
′𝑡∗

𝜏=0 = 0 and 482 

∑ 𝛿𝜏𝑤𝜏
𝑡∗

𝜏=0 > 0. When 𝑆 ≤ 𝑡∗, (A2) follows from the fact that 𝑉𝑡∗+1(𝒞′) =
1

1−𝛿
𝑓(1) > 𝑉𝑡∗+1(𝒞)5. 483 

Property (ii) and (A2) imply that 𝑦𝑡∗
′ > 𝑦𝑡∗. 484 

 As a result, since 𝒞 and 𝒞′ deliver the same payoff for the agent at 𝑡 = 0, we have 485 

Π0(𝒞′) − Π0(𝒞) = ∑ 𝛿𝑡(𝑦𝑡
′ − 𝑦𝑡) ≥ 𝛿𝑡∗

(𝑦𝑡
∗ − 𝑦𝑡)

∞

𝑡=0

> 0. (A3) 486 

 Step 2: Every optimal contract 𝒞 belongs to 𝒟. Let 𝒞 ∈ 𝒬 be an optimal contract with a 487 

graduation date 𝑇. Since there is no knowledge between two knowledge-transfer periods 𝑡𝑘 and 𝑡𝑘+1, the 488 

production is the same during this time range (i.e., 𝑓(𝑋𝑡) = 𝑦𝑡𝑘+1 for all 𝑡 = 𝑡𝑘 + 1, … , 𝑡𝑘+1). The 489 

expert’s profits at 𝑡 = 0 are 490 

Π0(𝒞) = (∑ 𝑦𝑡𝑘+1 ∑ 𝛿𝜏

𝑡𝑘+1

𝜏=𝑡𝑘+1

𝐾−1

𝑘=1

) − 𝑍, 491 

where 𝑍 = ∑ 𝛿𝜏𝑤𝜏
𝑡𝐾
𝜏=𝑡𝐾−1+1  is the agent’s cumulative wage during the last non-transfer periods 𝑡𝐾−1 <492 

𝑡 ≤ 𝑡𝐾 = 𝑇 − 1. Binding the agent’s incentive constraint at period 𝑡𝐾−1 + 1 gives 493 

𝑉𝑡𝐾−1+1(𝒞) = 𝛿−(𝑡𝐾−1+1)𝑍 +
𝛿𝑇−(𝑡𝐾−1+1)

1 − 𝛿
𝑓(1) =

1

1 − 𝛿
𝑦𝑡𝐾−1+1. 494 

 
4For 𝑡 ∈ 𝒜 and 𝑡 < 𝑇, we have 𝑉0(𝒞′) = 𝛿𝑡+1𝑉𝑡+1(𝒞′) = V0(𝒞) = ∑ 𝛿𝜏𝑤𝜏

𝑡
𝜏=0 + 𝛿𝑡+1𝑉𝑡+1(𝒞) ≥ 𝛿𝑡+1𝑉𝑡+1(𝒞) 

5 For the inequality, note that 𝑡∗ < 𝑇 − 1 thus 𝑓(𝑋𝑡∗+1) < 𝑓(1), so that Π𝑡∗+1 + 𝑉𝑡∗+1 <
𝑓(1)

1−𝛿
. The expert’s incentive constraint 

Π𝑡∗+1 ≥ 0 requires 𝑉𝑡∗+1 <
𝑓(1)

1−𝛿
. 
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Binding the agent’s incentive constraint at period 𝑡𝑘 + 1 for 𝑘 = 1, … , 𝐾 − 2, i.e., 𝑉𝑡𝑘+1(𝒞) =495 

𝛿𝑡𝐾−1−𝑡𝑘𝑉𝑡𝐾−1+1(𝒞) =
1

1−𝛿
𝑦𝑘, gives  496 

𝑦𝑡𝑘+1 = (1 − 𝛿)𝛿−(𝑡𝑘+1) [𝑍 +
𝛿𝑇

1 − 𝛿
𝑓(1)] , ∀𝑡𝑘 < 𝑡𝐾−1. 497 

As a result, the expert’s profits are a linear function of 𝑍 as  498 

[∑(1 − 𝛿𝑡𝑘+1−𝑡𝑘)

𝐾−1

𝑘=1

− 1] 𝑍 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 499 

Since the expert is free to choose 𝑤𝑡 ∈ [0, 𝑓(1)] for all 𝑡 = 𝑡𝐾−1 + 1, … , 𝑇 − 1, the optimality of 𝒞 500 

requires 𝑍 ∈ {0, 𝑓(1) ∑ 𝛿𝜏𝑡𝐾
𝜏=𝑡𝐾−1+1 }. When 𝑍 = 0, the agent’s liquidity constraint binds at period 𝑇 − 1. 501 

When 𝑍 = 𝑓(1) ∑ 𝛿𝜏𝑡𝐾
𝜏=𝑡𝐾−1+1 , which means 𝑤𝑡 = 𝑓(1), for all 𝑡 = 𝑡𝐾−1 + 1, … , 𝑇 − 1, the agent’s 502 

graduation date becomes 𝑇 = 𝑡𝐾−1 + 1. In both cases, the agent’s liquidity constraint binds at all 503 

knowledge-transfer periods before graduation, i.e., 𝒞 ∈ 𝒟. ∎ 504 

Proof of Proposition 2: 505 

 Let 𝒞 be a feasible contract (satisfying (1)-(3)) which has a graduation date 𝑇 and satisfies the 506 

properties in Proposition 1. Since the agent’s liquidity constraint binds at all 𝑡𝑘, the expert’s profits at 𝑡 =507 

0 can be written as 508 

∑ 𝑦𝑡𝑘+1 ∑ 𝛿𝜏

𝑡𝑘+1

𝜏=𝑡𝑘+1

𝐾−1

𝐾=1

. 509 

The agent’s incentive constraint at period 𝑡 = 𝑡𝑘 + 1 is 510 

𝛿𝑇−(𝑡𝑘+1)

1 − 𝛿
𝑓(1) ≥

1

1 − 𝛿
𝑦𝑡𝑘+1. 511 

Binding the agent’s incentive constraint at 𝑡 = 𝑡𝑘 + 1 gives 𝑦𝑡𝑘+1 = 𝛿𝑇−(𝑡𝑘+1)𝑓(1), that is, 𝑓(𝑋𝑡+1) =512 

𝛿𝑇−(𝑡+1)𝑓(1), ∀𝑡 ∈ 𝒜 ∩ {𝑡|𝑡 < 𝑇}. ∎ 513 

 514 

 515 
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Proof of Lemma 3: 516 

 Step 1: For every optimal contract 𝒞 ∈ ℋ with the maximum graduation date 𝑇𝑚𝑎𝑥 = 𝑇𝑖, 𝑖 ∈517 

{1,2}, 𝑇𝑖 ≥ 𝑖 −
1

ln 𝛿
. Suppose 𝑇𝑖 < 𝑖 −

1

ln 𝛿
, the expert can increase her profits by increasing 𝑇𝑖 to 𝑇𝑖

′ = 𝑖 −518 

1

ln 𝛿
, and train agent 𝑖 during periods 𝑇𝑖 ≤ 𝑡 < 𝑇𝑖

′. To see this, consider another contract 𝒞′ ∈ ℋ in which 519 

𝑇𝑖
′ = 𝑇𝑖

∗ and 𝑇𝑗
′ = 𝑇𝑗 for 𝑗 ≠ 𝑖. Since 𝑡𝑖,1 = 𝑖 − 1 for 𝑖 ∈ {1,2}, the expert’s profits obtained from agent 𝑖 520 

in 𝒞′ relative to 𝒞 is 521 

Π𝑖,0(𝒞′)

Π𝑖,0(𝒞)
= 𝛿𝑇𝑖

′−𝑇𝑖 [1 +
(𝑇𝑖

′ − 𝑇𝑖)(1 − 𝛿)

∑ (1 − 𝛿𝑡𝑖,𝑘+1−𝑡𝑖,𝑘)𝐾𝑖−1
𝑘=1

] 522 

 > 𝛿𝑇𝑖
′−𝑇𝑖 [1 +

(𝑇𝑖
′ − 𝑇𝑖)(1 − 𝛿)

(𝑇𝑖 − 𝑖)(1 − 𝛿)
] 523 

=
𝛿𝑇𝑖

′−𝑖(𝑇𝑖
′ − 𝑖)

𝛿𝑇𝑖−𝑖(𝑇𝑖 − 𝑖)
> 1. 524 

The first inequality follows that the nominator is smallest when the knowledge transfer is consecutive 525 

before 𝑇𝑖. The last inequality follows from the fact that arg max
𝑥

𝛿𝑥−𝑖(𝑥 − 𝑖) = 𝑖 −
1

ln 𝛿
. 526 

 Step 2: In every optimal contract 𝒞 ∈ ℋ, agent 1 graduates before agent 2 and agent 1 is trained 527 

during the 𝑚 consecutive knowledge-transfer periods after alternate training. Consider a contract 𝒞 ∈ ℋ 528 

that satisfies the property in step 1. There are four cases, depending on whether agent 1 or 2 is trained 529 

during the 𝑚 consecutive transfer periods at 2𝑛 ≤ 𝑡 < 𝑇𝑖, and whether agent 1 or 2 graduates first.  530 

 When 𝑇2 > 𝑇1, the profits when agent 1 is trained during the 𝑚 consecutive knowledge-transfer 531 

periods are lower than that when agent 2 is trained during these periods6. When 𝑇1 > 𝑇2, if agent 2 is 532 

trained during the 𝑚 periods, the profits are lower than those in a contract 𝒞′ ∈ ℋ with 𝑇1
′ = 𝑇2 and 𝑇2

′ =533 

𝑇1, in which agent 1 is trained during the 𝑚 consecutive periods, and agent 2 is trained during the 𝑙 534 

 
6 The profit differences between the two cases are 𝛿𝑇1 (𝑚 + 1 + 𝛿 −

1−𝛿𝑚+2

1−𝛿
) 𝑓(1) − 𝛿𝑇2 (𝑚 − 𝛿2 1−𝛿𝑚

1−𝛿
) 𝑓(1) ≥

𝛿𝑇1 [𝑚 + 1 + 𝛿 −
1−𝛿𝑚+2

1−𝛿
− (𝑚 − 𝛿2 1−𝛿𝑚

1−𝛿
)] 𝑓(1) = 0. 
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periods after 𝑡 = 𝑇1
′ − 17. If agent 1 is trained during the 𝑚 periods in 𝒞, it can be shown that the optimal 535 

𝑚 is either 0 or 18. Suppose 𝒞 is optimal, consider a contract 𝒞′ with 𝑇1
′ = 𝑇2 and 𝑇2

′ = 𝑇1 (thus 𝑇2
′ > 𝑇1

′), 536 

in which agent 2 is trained during the 𝑚 periods. The profits difference between 𝒞′and 𝒞 is 537 

𝛿𝑇2+1(𝛿𝑚 − 𝛿𝑇1−𝑇2)𝑓(1). Since in optimal contracts 𝒞, 𝑚 ∈ {0,1}, Π0(𝒞′) ≥ Π0(𝒞). Also, we have 538 

shown that the expert’s profits will be higher by training agent 1 during the 𝑚 periods in 𝒞′, so 𝒞 is not 539 

optimal, a contradiction. 540 

 Step 3: In every optimal contract 𝒞 ∈ ℋ, the expert alternates knowledge transfer between the 541 

two agents as much as possible, i.e., 𝑚 ∈ {0,1}. Consider a contract 𝒞 ∈ ℋ that satisfies the property in 542 

step 2. The expert’s profits are 543 

𝛿𝑇1[𝑛(1 + 𝛿) + 𝑚]𝑓(1) + 𝛿𝑇2 [𝑛(1 + 𝛿) + 𝛿2
1 − 𝛿𝑚

1 − 𝛿
+ 𝑙] 𝑓(1). 544 

Substituting 𝑛 =
𝑇1−𝑚−1

2
, and 𝑙 = 𝑇2 − 𝑇1 − 1 into the above expression, the second-order derivative of 545 

Π0(𝒞) with respect to 𝑚 is −
𝛿2+𝑚+𝑇2(ln 𝛿)2

1−𝛿
𝑓(1) < 0. Also, given fixed 𝑇1, 𝑇2, the profit difference 546 

between contracts with 𝑚 = 𝑚 and 𝑚 = 𝑚 + 1 is 547 

1

2
𝛿𝑇1[𝛿𝑇2−𝑇1(1 + 𝛿 − 2𝛿2+𝑚) − (1 − 𝛿)] > 0, 548 

given that 1 −
1

ln 𝛿
≥ 4 and 𝑇2 − 𝑇1 ≥ 1. Note that the minimum value of 𝑚 is 0 when 𝑇1 is odd, and 1 549 

when 𝑇1 is even. Therefore, at optimality, 𝑚 ∈ {0,1}. 550 

 
7 The overall profits given by 𝒞 are 

𝛿𝑇1 [𝑛(1 + 𝛿) + 𝛿2
1 − 𝛿𝑚+1

1 − 𝛿
+ 𝑙] 𝑓(1) + 𝛿𝑇2[(𝑛 − 1)(1 + 𝛿) + 𝑚 + 1]𝑓(1), 

where the first and second terms are profits obtained from agent 1 and 2, respectively. The profit difference between 𝒞′ and 𝒞 is 

𝛿(𝛿𝑇2 − 𝛿𝑇1𝛿𝑚+1)𝑓(1) > 0. 
8 The overall profits in this case are 

Π0(𝒞) = 𝛿𝑇1[𝑛(1 + 𝛿) + 𝑚 + 𝛿 + 𝑙]𝑓(1) + 𝛿𝑇2 [(𝑛 − 1)(1 + 𝛿) +
1 − 𝛿𝑚+1

1 − 𝛿
] 𝑓(1) . 

Since 𝑛 =
𝑇2−𝑚−1

2
, the first-order and second-order derivatives are 

𝜕Π0(𝒞)

𝜕𝑚
|𝑚=1 =

(1 − 𝛿)2𝛿𝑇1 − [(1 − 𝛿2) + 2𝛿2 ln 𝛿]𝛿𝑇2

2(1 − 𝛿)
𝑓(1) ≤

𝜕Π0(𝒞)

𝜕𝑚
|

𝑚=1,𝑇1=1−
1

ln 𝛿
,𝑇2=−

1
ln 𝛿

< 0, 

 𝜕2Π0(𝒞)

𝜕𝑚2 = −
𝛿1+𝑚+𝑇2(ln 𝛿)2 

1 − 𝛿
𝑓(1) < 0. 
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 Step 4: In every optimal contract 𝒞 ∈ ℋ, 𝑇2 = 𝑇1 + 1 (i.e., 𝑙 = 0). Consider a contract 𝒞 ∈ ℋ 551 

that satisfies the properties in steps 1, 2 and 3. When 𝑚 = 0, since 𝑇1 = 2𝑛 + 1, 𝑇2 = 𝑇1 + 𝑙 + 1, the 552 

profits are a function of 𝑛 and 𝑙 as 553 

Π0(𝑛, 𝑙) = 𝛿2𝑛+1𝑛(1 + 𝛿)𝑓(1) + 𝛿2(𝑛+1)+𝑙[𝑛(1 + 𝛿) + 𝑙]𝑓(1). 554 

When 𝑇2 > 𝑇1 ≥ 𝑇∗, if 𝑙 > 0, the expert can increase Π2,0 by reducing 𝑇2 to 𝑇1 + 19, so that 𝑙 = 0, and 555 

this operation does not change Π1,0. When 𝑇1 < 𝑇∗ < 𝑇2, the expert can increase her profits by reducing 556 

𝑇2 to 𝑇∗ + 110. Therefore, consider 𝑇1 < 𝑇2 = 𝑇∗ + 1, the expert’s profits change with 𝑙 as 557 

Π0(𝑙) = 𝛿𝑇2 [(1 + 𝛿−𝑙−1)
𝑇2 − 2 − 𝑙

2
(1 + 𝛿) + 𝑙] 𝑓(1). 558 

Since 
𝜕2Π0(𝑙)

𝜕𝑙2 < 0, 
𝜕Π0(𝑙)

𝜕𝑙 
|𝑙=0 > 0, and 

𝜕Π0(𝑙)

𝜕𝑙 
|𝑙=1 < 011, given 

Π0(𝑙=0)

Π0(𝑙=1)
> 1 when 𝑇2 ≥ 3, 𝑙 = 0 is optimal. 559 

 When 𝑚 = 1, the overall profits change with 𝑛 and 𝑙 as 560 

Π0(𝑛, 𝑙) = 𝛿2𝑛+2(𝑛(1 + 𝛿) + 1) + 𝛿2𝑛+3+𝑙(𝑛(1 + 𝛿) + 𝛿2 + 𝑙)𝑓(1). 561 

 
9 Let 𝒞′ ∈ ℋ be the contract after reducing 𝑇2 to 𝑇1 + 1, the profits obtained from agent 2 in 𝒞 relative to 𝒞′ are 

Π2,0(𝒞)

Π2,0(𝒞′)
= 𝛿𝑙 [1 +

𝑙

𝑛(1 + 𝛿)
], 

The first-order derivative of 
Π2,0(𝒞)

Π2,0(𝒞′)
 with respect to 𝑙 is 

𝛿𝑙
1 + (𝑙 + (1 + 𝛿)𝑛) ln 𝛿

𝑛(1 + 𝛿)
≤ 𝛿𝑙 (

1

𝑛(1 + 𝛿)
+ ln 𝛿) ≤ 𝛿𝑙 (

1

𝑇∗(1 + 𝛿)
2

+ ln 𝛿) < 0. 

10 The profits is a function of 𝑇1 and 𝑇2 as Π0(𝒞) = 𝛿𝑇1
𝑇1−1

2
(1 + 𝛿) + 𝛿𝑇2 [

𝑇1−1

2
(1 + 𝛿) + 𝑇2 − 𝑇1 − 1]. The first-order 

derivative w.r.t. 𝑇2 is 𝛿𝑇2 [1 +
1

2
(2𝑇2 − 𝑇1(1 − 𝛿) − 𝛿 − 3) ln 𝛿]. Given 𝑇1 < 𝑇∗ and 𝑇∗ = 1 −

1

ln 𝛿
≥ 3, 

𝜕Π0

𝜕𝑇2
< 0 when 𝑇2 > 1 +

𝑇∗. The profit difference between 𝑇2 = 1 + 𝑇∗ and 𝑇 = 2 + 𝑇∗ are  

𝛿2 [
1

2𝑒
(1 − 𝑇1(1 − 𝛿)2 − (4 − 𝛿)𝛿) −

1 − 𝛿

𝑒𝑙𝑛 𝛿
] ≥ 𝛿2 [

1

2𝑒
(1 − (𝑇∗ − 1)(1 − 𝛿)2 − (4 − 𝛿)𝛿) −

1 − 𝛿

𝑒𝑙𝑛 𝛿
] ≥ 0 

 
11 Note that 

𝜕2Π0(𝑙)

𝜕𝑙2 =
𝛿1−𝑙(1 + 𝛿) ln 𝛿 (1 − 𝑙 ln 𝛿)

2𝑒
𝑓(1) < 0, 

𝜕Π0(𝑙)

𝜕𝑙
|𝑙=0 =

(1 − 𝛿)𝛿2

2𝑒
𝑓(1) > 0. 

𝜕Π0(𝑙)

𝜕𝑙
|𝑙=1 =

(1 − 𝛿)𝛿2 + (1 + 𝛿) ln 𝛿

2𝑒
𝑓(1) < 0. 
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When 𝑇2 > 𝑇1 ≥ 𝑇∗, if 𝑙 > 0, similarly, the expert can increase Π2,0 by reducing 𝑙 to 012. When 𝑇1 <562 

𝑇∗ < 𝑇2, the expert can increase her profits by reducing 𝑇2 to 𝑇∗ + 1. When 𝑇1 < 𝑇2 = 𝑇∗ + 1, the 563 

profits change with 𝑙 as 564 

Π0(𝑙) = 𝛿𝑇2 [(1 + 𝛿−𝑙−1)
𝑇2 − 3 − 𝑙

2
(1 + 𝛿) + 𝑙 + 𝛿2 + 𝛿−1−𝑙] 𝑓(1). 565 

Similarly, 
𝜕2Π0(𝑙)

𝜕𝑙2 < 0, 
𝜕Π0(𝑙)

𝜕𝑙 
|𝑙=0 > 0, and 

𝜕Π0(𝑙)

𝜕𝑙 
|𝑙=1 < 013, given 

Π0(𝑙=0)

Π0(𝑙=1)
> 1 when 𝑇2 ≥ 3, 𝑙 = 0 is 566 

optimal. 567 

 Step 5: Up to an integer constraint of 𝑇∗ = 1 −
1

ln 𝛿
, in every optimal contract 𝒞 ∈ ℋ, 𝑇1 = 𝑇∗ =568 

1 −
1

ln 𝛿
, 𝑇2 = 𝑇∗ + 1. Consider a contract 𝒞 ∈ ℋ that satisfies the properties in steps 1,2,3 and 4. When 569 

𝑚 = 0, which occurs when 𝑇∗ is odd, the corresponding profits are  570 

𝛿𝑇1(1 + 𝛿)2
𝑇1 − 1

2
𝑓(1). 571 

The first-order condition gives that at the optimality, 𝑇1 = 𝑇∗ = 1 −
1

ln 𝛿
. When 𝑚 = 1, which occurs 572 

when 𝑇∗ is even, the corresponding profits are 573 

𝛿𝑇1 [(1 + 𝛿)2 (
𝑇1

2
− 1) + 1 + 𝛿3] 𝑓(1). 574 

At optimality, 𝑇1 = 𝑇∗14. ∎ 575 

 
12 Note that the ratio of the profits obtained from agent 2 in 𝒞 relative to 𝒞′, and its first-derivative w.r.t. 𝑙 are: 

Π2,0(𝒞)

Π2,0(𝒞′)
= 𝛿𝑙

𝑙 + 𝑛(1 + 𝛿) + 𝛿2

𝑛(1 + 𝛿) + 𝛿2 , 

𝜕 (
Π2,0(𝒞)

Π2,0(𝒞′)
)

𝜕𝑙
= 𝛿𝑙

1 + (𝑙 + 𝑛(1 + 𝛿) + 𝛿2) ln 𝛿

𝑛(1 + 𝛿) + 𝛿2 ≤ 𝛿𝑙 (
1

𝑇∗(1 + 𝛿)
2

+ 𝛿2

+ ln 𝛿) < 0. 

Therefore, 
Π2,0(𝒞)

Π2,0(𝒞′)
≤ 1. 

13 Note that given 𝑇2 = 2 −
1

ln 𝛿
≥ 3, 

𝜕2Π0(𝑙)

𝜕𝑙2 =
𝛿1−𝑙 ln 𝛿 (1 + 𝛿 − ln 𝛿 (𝑙 − 1 + 𝛿 + 𝑙𝛿))

2𝑒
𝑓(1) < 0, 

𝜕Π0(𝑙)

𝜕𝑙
|𝑙=0 =

𝛿(1 − 𝛿)(𝛿 − ln 𝛿)

2𝑒
𝑓(1) > 0, 

𝜕Π0(𝑙)

𝜕𝑙
|𝑙=1 =

𝛿(𝛿 − 𝛿2 + 2 ln 𝛿)

2𝑒
𝑓(1) < 0. 

14 The first-order condition gives  

𝑇1 =
2(2 − 𝛿)𝛿

1 + 𝛿
−

1

ln 𝛿
= 𝑇∗ + (5 − 2𝛿 −

6

1 + 𝛿
). 
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Proof of Proposition 3: 576 

 When 𝛿 ≥ 𝑒−1/2 so that 𝑇∗ = 1 −
1

ln 𝛿
≥ 3, based on Proposition 2 and Lemmas 1 and 3, under 577 

the integer constraint of 𝑇∗ = 1 −
1

ln 𝛿
 and 

𝛿

𝑒 ln 𝛿
, the expert’s maximum profits under different scenarios 578 

are as follows: 579 

(i) Agent 2 is not trained before agent 1 graduates, Π0
1 = 𝑒−1+

𝛿

𝑒𝛿(𝑇∗ − 1)𝑓(1). 580 

(ii) Agent 2 is trained before agent 1 graduates and 𝑇∗ is odd, Π0
2 = 𝛿𝑇∗

(1 + 𝛿)2 𝑇∗−1

2
𝑓(1). 581 

(iii) Agent 2 is trained before agent 1 graduates and 𝑇∗ is even, Π0
3 = 𝛿𝑇∗

[(1 + 𝛿)2 (
𝑇∗

2
− 1) + 1 +582 

𝛿3] 𝑓(1). 583 

Ignoring the integer constraints, it can be shown that Π0
2 > Π0

1 and Π0
3 > Π0

1 given 𝑇∗ ≥ 315. 584 

 When 𝛿 < 𝑒−
1

2, the optimal contract when agent 2 is trained before agent 1 is alternate training 585 

with 𝑇1 = 3 and 𝑇2 = 4. We still need to solve for the optimal contract when agent 2 is not trained before 586 

agent 1 graduates. First consider agent 2’s graduation date, the agent 2’s optimal training duration is 3 587 

periods when 0.5 < 𝛿 < 𝑒−
1

2 and 2 periods when 𝛿 < 0.516. When  0.5 < 𝛿 < 𝑒−
1

2 so that agent 2’s 588 

training duration is 3 periods, Lemma 1 indicates that the optimal graduation date of agent 1 is no larger 589 

than 3 periods. When  𝑇1 = 3,  the expert’s profits are lower than the contract with alternate training17. 590 

 

Since −1 < 5 − 2𝛿 −
6

1+𝛿
< 1, we need to compare the profits Π0(𝑇1) at 𝑇1 = 𝑇∗ − 1, 𝑇∗ and 𝑇∗ + 1. The profit difference 

when 𝑇1 = 𝑇∗ and 𝑇1 = 𝑇∗ + 1 is 

−
𝛿(1 + 𝛿) [1 − 𝛿2 − ln 𝛿 (1 − 𝛿(5 − 2𝛿(2 − 𝛿)))]

2𝑒 ln 𝛿
𝑓(1) > 0. 

Also, given 𝑇∗ = 1 −
1

ln 𝛿
≥ 3, the profit difference when 𝑇1 = 𝑇∗ and 𝑇1 = 𝑇∗ − 1 is 

(1 + 𝛿)[1 − 𝛿2 + 𝛿 ln 𝛿 (5 − 𝛿(5 − 2𝛿))]

2𝑒 ln 𝛿
𝑓(1) > 0. 

15When 𝑇∗ = 1 −
1

ln 𝛿
 is odd, note that 

Π0
2

Π0
1 =

1

2
𝑒−

𝛿

𝑒(1 + 𝛿)2 is increasing in 𝛿, and Π0
2 > Π0

1 when 𝑇∗ = 3. When 𝑇∗ is even and 

𝑇∗ ≥ 4, 
Π0

3

Π0
1 =

1

2
𝑒−

𝛿

𝑒(1 + 𝛿)[1 + 𝛿 − ln 𝛿 (1 − 𝛿(3 − 2𝛿))] is increasing in 𝛿, and Π0
3 > Π0

11 when 𝑇∗ = 4. 

16 Consider a single-agent contract, the expert’s profits are 𝛿2𝑓(1) and 2𝛿3𝑓(1) when the graduate date is 2 and 3, 

respectively. 𝛿2𝑓(1) > 2𝛿3 when 𝛿 < 0.5. 
17The expert’s profits are 2𝛿3(1 + 𝛿3)𝑓(1) and 𝛿3(1 + 𝛿)2𝑓(1) under sequential training with 𝑇1 = 3 and 𝑇2 = 6, 

and alternate training with 𝑇1 = 3, 𝑇2 = 4, respectively. 2𝛿3(1 + 𝛿3)𝑓(1) > 𝛿3(1 + 𝛿)2𝑓(1) requires 𝛿 < 0.5. 
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When 𝑇1 = 2, this contract gives higher profits than the contract with alternate training when 0.5 < 𝛿 <591 

𝛿∗18, where 𝛿∗ ≈ 0.555 solves the equation 𝛿3 − 2𝛿2 − 𝛿 + 1 = 0. When  𝛿 < 0.5, agent 2’s training 592 

duration is 2 periods, at optimality, agent 1’s optimal graduation date is 2, and this contract gives higher 593 

profits than the contract with alternate training.  594 

 To relax the integer constraint of 1 −
1

ln 𝛿
, let Π0

2(𝑇) = 𝛿𝑇(1 + 𝛿)2 𝑇−1

2
𝑓(1) and Π0

3(𝑇) =595 

𝛿𝑇 [(1 + 𝛿)2 (
𝑇

2
− 1) + 1 + 𝛿3] 𝑓(1) denote the profits when 𝑇 is odd and even, respectively. When 𝑇 is 596 

even, we need to compare the profits under four cases: Π0
2(𝑇 − 1), Π0

2(𝑇 + 1), Π0
3(𝑇), Π0

3(𝑇 + 2). It can 597 

be shown that Π0
2(𝑇 + 1) > Π0

2(𝑇 − 1)19 and Π0
2(𝑇 + 1) > Π0

3(𝑇 + 2)20, so we only need to compare 598 

Π0
2(𝑇 + 1) and Π0

3(𝑇). It turns out that Π0
3(𝑇) > Π0

2(𝑇 + 1) when 𝑇 >
2𝛿(2−𝛿)

1−𝛿2
21. 599 

 When 𝑇 is odd, we compare the profits under four cases: Π0
2(𝑇), Π0

2(𝑇 + 2), Π0
3(𝑇 − 1), 600 

Π0
3(𝑇 + 1). It can be shown that Π0

3(𝑇 + 1) > Π0
3(𝑇 − 1)22 and Π0

3(𝑇 + 1) > Π0
2(𝑇 + 2)23. Therefore, 601 

we only need to compare profits Π0
2(𝑇) and Π0

3(𝑇 + 1), and Π0
2(𝑇) > Π0

3(𝑇 + 1) when 𝑇 >602 

1+𝛿(2+2𝛿2−3𝛿)

1−𝛿2
24. ∎ 603 

Proof of Corollary 2: 604 

 
18Under sequential training with 𝑇1 = 2 and 𝑇2 = 5, and alternate training with 𝑇1 = 3, 𝑇2 = 4, the expert’s profits 

are 𝛿2(1 + 2𝛿3)𝑓(1) and 𝛿3(1 + 𝛿)2𝑓(1), respectively. 𝛿2(1 + 2𝛿3)𝑓(1) > 𝛿3(1 + 𝛿)2𝑓(1) when 𝛿3 − 2𝛿2 −
𝛿 + 1 > 0. 
19Note that Π0

2(𝑇 + 1) − Π0
2(𝑇 − 1) =

1

2
𝛿𝑇−1(1 + 𝛿)2[2 − 𝑇(1 − 𝛿2)]𝑓(1). Therefore, Π0

2(𝑇 + 1) > Π0
2(𝑇 − 1) when 𝑇 <

2

1−𝛿2. Since 
2

1−𝛿2 >
1

1−ln 𝛿
> 𝑇,  Π0

2(𝑇 + 1) > Π0
2(𝑇 − 1). 

20Note that Π0
2(𝑇 + 1) − Π0

3(𝑇 + 2) = −
1

2
𝛿𝑇+1(1 + 𝛿)[2𝛿(1 − 𝛿(1 − 𝛿)) − 𝑇(1 − 𝛿2)]𝑓(1). Therefore, Π0

2(𝑇 + 1) >

Π0
3(𝑇 + 2) when 𝑇 >

2𝛿(1−𝛿+𝛿2)

1−𝛿2 . Since 
2𝛿(1−𝛿+𝛿2)

1−𝛿2 < 𝑇 for all 𝛿 ∈ (0,1), Π0
2(𝑇 + 1) > Π0

3(𝑇 + 2). 

21Note that Π0
3(𝑇) − Π0

2(𝑇 + 1) = −
1

2
𝛿𝑇(1 + 𝛿)[4𝛿 − 2𝛿2 − (1 − 𝛿2)𝑇]𝑓(1). 

22Note that Π0
3(𝑇 + 1) − Π0

3(𝑇 − 1) =
1

2
𝛿𝑇−1(1 + 𝛿2)[1 − 𝑇(1 − 𝛿2) + 𝛿(4 − 𝛿(5 − 2𝛿))]𝑓(1), so  Π0

3(𝑇 + 1) > Π0
3(𝑇 − 1) 

when 𝑇 < 5 (1 −
1

1+𝛿
) +

1

1−𝛿
− 2𝛿. Since 5 (1 −

1

1+𝛿
) +

1

1−𝛿
− 2𝛿 >

1

1−ln 𝛿
> 𝑇 for 1 −

1

ln 𝛿
> 3,  Π0

3(𝑇 + 1) > Π0
3(𝑇 − 1). 

23 Note that Π0
3(𝑇 + 1) − Π0

2(𝑇 + 2) = −
1

2
𝛿𝑇+1(1 + 𝛿)[4𝛿 − 𝛿2 − 1 − (1 − 𝛿2)𝑇]𝑓(1), so Π0

3(𝑇 + 1) > Π0
2(𝑇 + 2) when 𝑇 >

4𝛿−𝛿2−1

1−𝛿2 . Since 
4𝛿−𝛿2−1

1−𝛿2 < 𝑇 − 1 < 𝑇, Π0
3(𝑇 + 1) − Π0

2(𝑇 + 2). 

24Note that Π0
2(𝑇) − Π0

3(𝑇 + 1) = −
1

2
𝛿𝑇(1 + 𝛿) [1 − 𝑇(1 − 𝛿2) + 𝛿2(2 − 𝛿(3 − 2𝛿))]𝑓(1). 
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 Part (i): Consider a contract with a single agent constraint of non-transfer periods ℬ. The 605 

Planner’s problem is to maximize the objective 𝜆𝑉0(𝒞) + Π0(𝒞) subject to the constraints in Problem (II). 606 

The goal is to show that the optimal contract 𝒞 belongs to the set of delayed-reward contracts 𝒟. Step 1 in 607 

the proof of property (ii) in Proposition 1 implies that 𝒞 must belong to the set of quasi-delayed-reward 608 

contracts 𝒬. Given 𝒞 ∈ 𝒬, there exists a graduation date 𝑇 ≥ 1 such that the agent’s liquidity constraint 609 

binds at all knowledge-transfer periods before 𝑇 (i.e., 𝑡 ∈ 𝒜 ∩ {𝑡|𝑡 < 𝑇 − 1}, 𝑍 = ∑ 𝛿𝜏𝑤𝜏
𝑡𝐾
𝜏=𝑡𝐾−1+1 ≥ 0, 610 

where 𝑡𝐾−1 and 𝑡𝐾 = 𝑇 − 1 are the last two knowledge-transfer periods, and 𝑤𝑡 = 𝑓(1) for all 𝑡 > 𝑇.  611 

 The Planner’s objective is 612 

𝜆𝑉0(𝒞) + Π0(𝒞) = 𝜆 [𝑍 +
𝛿𝑇

1 − 𝛿
𝑓(1)] + ∑ 𝑦𝑡𝑘+1 ∑ 𝛿𝜏

𝑡𝑘+1

𝜏=𝑡𝑘+1

𝐾−1

𝑘=1

− 𝑍. 613 

The agent’s incentive constrains after knowledge-transfer periods 𝑡1, … , 𝑡𝐾−1 are 614 

𝑉𝑡𝑘+1(𝒞) = 𝛿𝑡𝐾−1−𝑡𝑘𝑉𝑡𝐾−1+1(𝒞) ≥
1

1 − 𝛿
𝑦𝑡𝑘+1, 615 

where 𝑉𝑡𝐾−1+1(𝒞) = 𝛿−(𝑡𝐾−1+1) [𝑍 +
𝛿𝑇

1−𝛿
𝑓(1)]. Since the Planner’s objective is increasing in 616 

𝑦𝑡1+1, … , 𝑦𝑡𝐾−1+1, the hypothesis that 𝒞 maximizes the Planner’s object requires that the incentive 617 

constraints above bind. After substituting for 𝑦𝑡𝑘+1, the Planner’s objective becomes  618 

(∑(1 − 𝛿𝑡𝑘+1−𝑡𝑘)

𝐾−1

𝑘=1

+ 𝜆 − 1) 𝑍 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 619 

which is linear in 𝑍. Since the expert is free to vary 𝑍 in the range [0, 𝑓(1) ∑ 𝛿𝜏𝑡𝐾
𝜏=𝑡𝐾−1+1 ], the hypothesis 620 

that 𝒞 maximizes the Planner’s object requires that 𝑍 ∈ {0, 𝑓(1) ∑ 𝛿𝜏𝑡𝐾
𝜏=𝑡𝐾−1+1 }. As a result, for both 621 

cases, 𝒞 ∈ 𝒟. 622 

 Finally, given a fixed graduation date 𝑇, since the agent’s payoff is fixed, maximizing the 623 

Planner’s objective is effectively the same as maximizing the expert’s profits. Therefore, the optimal 624 

knowledge stock is the same as that described in Proposition 2. 625 
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 Part (ii): There are two scenarios depending on whether agent 2 gets trained before agent 1 626 

graduates or not. For the case when agent 2 gets trained before agent 1 graduates, it is sufficient to focus 627 

on contracts in the set ℋ, which have the special properties described in Lemma 2, since in the proof of 628 

Lemma 2, the agents’ graduation date is fixed, so maximization of the Planner’s objective is effectively 629 

the same as maximization of the expert’s profits. Now I show that a Pareto-efficient contract in which 630 

agent 2 is trained before agent 1’s graduation preserves the overall structure of profit-maximizing 631 

contract. 632 

 Step 1: For every efficient contract 𝒞 ∈ ℋ, the maximum graduation date is no smaller than 𝑖 −633 

1

ln 𝛿
−

2𝜆

1−𝛿2, where 𝑖 ∈ {1,2} stands for the agent who graduates later. Denote the welfare from contracting 634 

with agent 𝑖 as 𝑊𝑖,0(𝒞) = Π𝑖,0(𝒞) + 𝜆𝑉𝑖,0(𝒞). If 𝑇𝑖 < 𝑖 −
1

ln 𝛿
, the Planner can increase 𝑊0 by increasing 𝑙 635 

so that in the new contract 𝒞′ ∈ ℋ, the graduation date of agent 𝑖 is 𝑖 −
1

ln 𝛿
max{1 − 𝜆𝐴, 0}. The relative 636 

value of 𝑊𝑖,0 in 𝒞′ and 𝒞 is 637 

𝑊𝑖,0(𝒞′)

𝑊𝑖,0(𝒞)
= 𝛿𝑇𝑖

′−𝑇𝑖 [1 +
(𝑇𝑖

′ − 𝑇𝑖)(1 − 𝛿)

∑ (1 − 𝛿𝑡𝑖,𝑘+1−𝑡𝑖,𝑘)𝐾𝑖−1
𝑘=1 + 𝜆

] 638 

> 𝛿𝑇𝑖
′−𝑇𝑖 [1 +

(𝑇𝑖
′ − 𝑇𝑖)(1 − 𝛿)

(𝑇𝑖 − 𝑖)(1 − 𝛿) + 𝜆
] 639 

=
𝛿𝑇𝑖

′
[
(𝑇𝑖

′ − 𝑖)
2

(1 + 𝛿) +
𝜆

1 − 𝛿
]

𝛿𝑇𝑖 [
(𝑇𝑖 − 𝑖)

2
(1 + 𝛿) +

𝜆
1 − 𝛿]

> 1. 640 

The last inequality follows from the fact that arg max
𝑥≥1

𝛿𝑥 (
𝑥−𝑖

2
(1 + 𝛿) +

𝜆

1−𝛿
) = 𝑖 −

1

ln 𝛿
−

2𝜆

1−𝛿2. 641 

 Step 2: In every efficient contract 𝒞 ∈ ℋ, 𝑇2 > 𝑇1 and 𝑚 ∈ {0,1}, and agent 1 is trained during 642 

period 𝑡 = 2𝑛 when 𝑚 = 1. Suppose in an efficient contract 𝒞 ∈ ℋ, 𝑇1 > 𝑇2, step 2 in the proof of 643 

Lemma 2 shows that there exists 𝒞′ ∈ ℋ with 𝑇𝑖
′ ∈ {𝑇1, 𝑇2} for 𝑖 = 1, 2, such that Π0(𝒞′) > Π0(𝒞). Also, 644 

the agents’ total payoffs are not changed, since 𝑉1,0(𝒞′) + 𝑉2,0(𝒞′) =
𝛿𝑇1

′
+𝛿𝑇2

′

1−𝛿
𝑓(1) =

𝛿𝑇1+𝛿𝑇2

1−𝛿
𝑓(1). 645 

Therefore, the Planner’s objectives are higher in 𝒞′ than 𝒞, a contradiction. Now consider 𝒞 ∈ ℋ with 646 
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𝑇1 < 𝑇2. Given 𝑇1 and 𝑇2 fixed, the agents’ profits are fixed, steps 3 in the proof of Lemma 2 show that 647 

the expert’s profits are highest when 𝑚 ∈ {0,1}. Moreover, if 𝑚 = 1, step 2 in the proof of Lemma 2 648 

shows that the expert’s profits are higher when agent 1 (instead of agent 2) is trained in period 𝑡 = 2𝑛. 649 

 Step 3: In every efficient contract 𝒞 ∈ ℋ, 𝑇2 = 𝑇1 + 1. Consider a contract 𝒞 ∈ ℋ that satisfies 650 

the properties in steps 1 and 2 (thus 𝑇2 > 𝑇1). Let 𝑇∗ = 1 −
1

ln 𝛿
−

2𝜆

1−𝛿2. When 𝑚 = 0, if 𝑇1 ≥ 𝑇∗, if 𝑙 >651 

0, the planner can increase 𝑊2,0 by reducing 𝑇2 to 𝑇1 + 1 (so that 𝑙 = 0), and this operation does not 652 

change 𝑊1,0
25. When 𝑇1 ≤ 𝑇∗ < 𝑇2, the Planner can increase 𝑊2,0 by reducing 𝑇2 to 𝑇∗ + 1. Therefore, 653 

consider 𝑇1 < 𝑇2 = 1 + 𝑇∗, the expert’s profits change with 𝑙 as 654 

𝑊0(𝑙) = 𝛿𝑇2 [𝜆
𝛿−𝑙−1 + 1

1 − 𝛿
+ (1 + 𝛿−𝑙−1)

𝑇2 − 2 − 𝑙

2
(1 + 𝛿) + 𝑙] 𝑓(1). 655 

Since 
𝜕2𝑊0(𝑙)

𝜕𝑙2 < 0 and 
𝜕W0(𝑙)

𝜕𝑙 
|𝑙=1 < 026, given 

W0(𝑙=0)

𝑊0(𝑙=1)
> 1 when 𝑇2 = 𝑇∗ + 1 ≥ 3, 𝑙 = 0 is optimal. 656 

When 𝑚 = 1, a similar proof shows that 𝑙 = 0 is optimal. 657 

 Step 4: Let 𝑇𝜆
∗ = 1 −

1

1−ln 𝛿
−

2𝜆

1−𝛿2, up to an integer constraint of 𝑇𝜆
∗ with 𝑇𝜆

∗ ≥ 3, in an optimal 658 

contract that agent the optimal graduation date is 𝑇1 = 𝑇𝜆
∗ and 𝑇2 = 𝑇𝜆

∗ + 1. Consider a contract 𝒞 that 659 

satisfies the properties in part (i) and the previous steps 1 to 4. When 𝑇1 odd, so that fully alternate 660 

training is achievable, the Planner’s objective is 661 

[𝜆
𝛿𝑇1 + 𝛿𝑇1+1

1 − 𝛿
+ 𝛿𝑇1(1 + 𝛿)2

𝑇1 − 1

2
] 𝑓(1). 662 

The first-order condition gives that the optimal 𝑇1 is 1 −
1

ln 𝛿
−

2𝜆

1−𝛿2. When 𝑇1 is even, the Planner’s 663 

objective is  664 

 
25 𝑊2,0(𝑛, 𝑙) = [𝜆

𝛿2(𝑛+1)+𝑙

1−𝛿
+ 𝛿2(𝑛+1)+𝑙(𝑛(1 + 𝛿) + 𝑙)] 𝑓(1). The first-derivate of 𝑊2,0(𝑛, 𝑙)/𝑊2,0(𝑛, 0) w.r.t. 𝑙 is 

𝛿𝑙 [1 − 𝛿 + ((1 − 𝛿)(𝑙 + 𝑛(1 + 𝛿)) + 𝜆) ln 𝛿]

𝑛(1 − 𝛿2) + 𝜆
≤

𝛿𝑙

𝑛(1 − 𝛿2) + 𝜆
[1 − 𝛿 + ((1 − 𝛿)

𝑇∗

2
(1 + 𝛿) + 𝜆) ln 𝛿] < 0. 

26 Note that 
𝜕2𝑊0(𝑙)

𝜕𝑙2 =
𝛿

1−𝑙−
2𝜆

1−𝛿(1+𝛿) ln 𝛿(1−𝑙 ln 𝛿)

2𝑒
𝑓(1) < 0 and 

𝜕Π0(𝑙)

𝜕𝑙
|𝑙=1 = 𝛿−

2𝜆

1−𝛿2 (1−𝛿)𝛿2+(1+𝛿) ln 𝛿

2𝑒
𝑓(1) < 0. 
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[𝜆
𝛿𝑇1 + 𝛿𝑇1+1

1 − 𝛿
+ 𝛿𝑇1 ((1 + 𝛿)2 (

𝑇1

2
− 1) + 1 + 𝛿3)] 𝑓(1). 665 

It can be shown that given 𝑇𝜆
∗ is integer, the optimal 𝑇1 is also 𝑇𝜆

∗27.  666 

 Step 6: Up to an integer constraint of 𝑇𝜆
∗ = 1 −

1

ln 𝛿
−

2𝜆

1−𝛿2 with 𝑇𝜆
∗ ≥ 3, the maximum value of 667 

the Planner’s objective when agent 2 is trained before agent 1’s graduation is higher than that when agent 668 

2 is trained after agent 1’s graduation. First, I derive the maximum value of the objective when agent 2 669 

gets trained after agent 1’s graduation. By Corollary 1 in Garicano and Rayo (2017), the efficient training 670 

duration of agent 2 is 1 −
1

ln 𝛿
−

𝜆

1−𝛿
. Note that 𝑇𝜆

∗ is assumed to be an integer, 1 −
1

ln 𝛿
−

𝜆

1−𝛿
 is numeric 671 

value and thus not achievable. However, let’s first ignore the integer constraint, so that the Planner’s 672 

objective changes with the graduation date of agent 1 𝑇1 as 673 

𝛿𝑇1 [𝜆
1 + 𝛿

1−
1

𝑙𝑛 𝛿
−

𝜆
1−𝛿

1 − 𝛿
+ (𝑇1 − 1) + (1 −

1

ln 𝛿
−

𝜆

1 − 𝛿
− 1) 𝛿

1−
1

ln 𝛿
−

𝜆
1−𝛿] 𝑓(1). 674 

At optimality, 𝑇1 = max {1 −
1

ln 𝛿
−

𝜆

1−𝛿
+

𝛿
1−

𝜆
1−𝛿

𝑒 ln 𝛿
, 1}, which is shorter than the efficient graduation date 675 

when there is only a single agent. When 1 −
1

ln 𝛿
−

𝜆

1−𝛿
+

𝛿
1−

𝜆
1−𝛿

𝑒 ln 𝛿
≥ 1, the corresponding value of the 676 

Planner’s objective is −
𝛿

1−
𝜆

1−𝛿

𝑒 ln 𝛿
𝑒

𝛿
1−

𝜆
1−𝛿

𝑒 𝑓(1). When 1 −
1

ln 𝛿
−

𝜆

1−𝛿
+

𝛿
1−

𝜆
1−𝛿

𝑒 ln 𝛿
< 1, 𝑇1 = 1, and the 677 

corresponding profits are 𝛿 [𝜆
1+𝛿

1−
1

ln 𝛿
−

𝜆
1−𝛿

1−𝛿
+ (1 −

1

ln 𝛿
−

𝜆

1−𝛿
− 1) 𝛿1−

1

ln 𝛿
−

𝜆

1−𝛿] 𝑓(1). As a summary, 678 

given the integer constraints are satisfied, the maximum value of the Planner’s objective under different 679 

scenarios is: 680 

 
27 The first order condition gives that the optimal 𝑇1 is 𝑇𝜆

∗ + (5 − 2𝛿 −
6

1+𝛿
), and 0 < 5 − 2𝛿 −

6

1+𝛿
< 1, given that 𝑇𝜆

∗ ≥ 3 

(which requires 𝛿 > 𝑒−
1

2). The difference in the Planner’s objective between contracts with 𝑇1 = 𝑇𝜆
∗ and 𝑇1 = 𝑇𝜆

∗ + 1 

is−
𝛿

1−
2𝜆

1−𝛿2(1+𝛿)

2𝑒 ln 𝛿
[1 − 𝛿2 − (1 − 𝛿(5 − 2(2 − 𝛿)𝛿)) ln 𝛿] > 0. 
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(i) when agent 2 is trained after agent 1’s graduation, the objective is are no larger than 𝑊0
1 =681 

−
𝛿

1−
𝜆

1−𝛿

𝑒 ln 𝛿
𝑒

𝛿
1−

𝜆
1−𝛿

𝑒 𝑓(1) or 𝑊0
1 = 𝛿 [𝜆

1+𝛿
1−

1
𝑙𝑛 𝛿

−
𝜆

1−𝛿

1−𝛿
+ (1 −

1

ln 𝛿
−

𝜆

1−𝛿
− 1) 𝛿1−

1

ln 𝛿
−

𝜆

1−𝛿] 𝑓(1). 682 

(ii) when agent 2 is trained before agent 1’s graduation and 𝑇∗ is odd, 𝑊0
2 = 𝛿𝑇𝜆

∗
[𝜆

1+𝛿

1−𝛿
+683 

(1 + 𝛿)2 𝑇𝜆
∗−1

2
] 𝑓(1). 684 

(iii) when agent 2 is trained before agent 1’s graduation and 𝑇∗ is even, 𝑊0
3 = 𝛿𝑇𝜆

∗
[𝜆

1+𝛿

1−𝛿
+685 

(1 + 𝛿)2 (
𝑇𝜆

∗

2
− 1) + 1 + 𝛿3] 𝑓(1). 686 

Ignoring the integer constraints and treating 𝑊0
1, 𝑊0

2, and 𝑊0
3 as a continuous function of 𝛿, it can be 687 

shown that given 𝑇𝜆
∗ ≥ 3, 688 

Suppose 1 −
1

ln 𝛿
−

𝜆

1−𝛿
− +

𝛿
1−

𝜆
1−𝛿

𝑒 ln 𝛿
> 1 so that 𝑊0

1 = −
𝛿

1−
𝜆

1−𝛿

𝑒 ln 𝛿
𝑒

𝛿
1−

𝜆
1−𝛿

𝑒 𝑓(1), 
𝑊0

3

𝑊0
1 =

1

2
𝑒−

𝛿
1+

𝜆
−1+𝛿

𝑒 𝛿−
𝜆

1+𝛿(1 +689 

𝛿)[1 + 𝛿 − (1 − (3 − 2𝛿)𝛿) ln 𝛿] is increasing in 𝛿. Therefore, given a fixed 𝜆, 
𝑊0

3

𝑊0
1 is smallest when 𝛿 is 690 

small enough such that the constraint 𝑇𝜆
∗ = 3 binds (thus 𝜆 = −

(1−𝛿2)(1+2 ln 𝛿)

2 ln 𝛿
), and the value is 691 

1

2
𝑒

1

2
−

𝛿

2
−𝑒

1
2

(−1+𝛿)
𝛿2+𝛿

𝛿1−𝛿(1 + 𝛿)(1 + 𝛿 − (1 − 𝛿)(1 − 2𝛿) ln 𝛿), which is greater than 1 when 𝛿 < 𝛿∗ ≈692 

0.845, where 𝛿∗ is the solution to the previous equation. The weight 𝜆 corresponding to 𝛿∗ is about 0.564. 693 

When 𝜆 > 0.564, the 1 −
1

ln 𝛿
−

𝜆

1−𝛿
− +

𝛿
1−

𝜆
1−𝛿

𝑒 ln 𝛿
< 1 so the efficient graduation date of agent 1 is 𝑇1 = 1 694 

when agent 2 is trained after agent 1 graduates, and 𝑊0
1 = 𝛿 [𝜆

1+𝛿
1−

1
ln 𝛿

−
𝜆

1−𝛿

1−𝛿
+ (1 −

1

ln 𝛿
−

𝜆

1−𝛿
−695 

1) 𝛿1−
1

ln 𝛿
−

𝜆

1−𝛿] 𝑓(1). It can be shown that 
𝑊0

3

𝑊0
1 > 1. Therefore, given 𝑇𝜆

∗ ≥ 3, 𝑊0
3 > 𝑊0

1. Since 𝑊0
2 −696 

𝑊0
3 =

𝛿
1−

2𝜆

1−𝛿2 (−1+𝛿(2+𝛿−2𝛿2))

2𝑒
> 0 given 𝑇𝜆

∗ ≥ 3, we have 𝑊0
2 > 𝑊0

1. ∎ 697 

 698 
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